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DEFINITIONS, ACRONYMNS, ABBREVIATIONS, AND SYMBOLS

Boolean Expression

Boolean Function

Boolean Object

Boolean Operator

Branchpoint

Condition

Condition Combination

An expression which evaluates to one of two possible (Boolean)
outcomes traditionally known as False and True. These are generally
abbreviated as F for False and T for True. Sometimes, O is used for
False and 1 for True.

A function that returns a Boolean value (False, True). It may be
either user defined or implementation defined. The relational
operators operating on non-Booleans are examples of implementation
defined Boolean functions.

Something that holds a Boolean value (False, True). It may be either
constant or variable.

Operators operating on Booleans. These can be:

Class of Boolean Operators Boolean Operators

Unary infix operators NOT

Binary infix normal form AND, OR, XOR

operators

Binary infix short-circuit form | AND (AND-THEN), OR (OR-
operators ELSE)

Binary relational operators R T A S

operating on Booleans

A point in a computer program at which one of two or more
alternative sets of program statements is selected for execution.

The operand(s) of a Boolean operator (Boolean functions, objects and
operators). Generally this refers to the lowest level conditions (i.e.,
those operands which are not Boolean operators themselves), which
are normally the leaves of an expression tree (see the example at the
Expression Tree definition). Note that a condition is a Boolean (sub)
expression.

The Boolean values that the conditions in a Boolean expression may
assume. The Boolean values that the operands of a Boolean operator
may assume. One or both of those operands may be operators
themselves, in which case the condition combination requires a
certain outcome from the subexpression the operator operand
represents.



Coupled Conditions

Coupling

For the expression
Aand (B or C)

one condition combination for the expression is (TFF) in (A, B,C).
For the expression
Aand (B or C)

one condition combination for the AND operator is (TF) in (A,(B or
C)), where B or C represents a subexpression, and the OR is an
operator operand of the AND.

Condition combinations are generally identified by a (decimal)
number generated by interpreting the condition combinations as a
binary number (interpreting a False as 0, a True as 1, and a
nonexecution due to short-circuit operators as 0). Hence (TFF) is
identified as 4:(TFF) (from (100), = 4). In some analyses, only the
number is used.

Two or more conditions where changing one condition can cause the
other condition(s) to change.

Strongly coupled conditions are those conditions where changing one
condition always changes the others. For example, in the expression

(X=0andA)or (X#£0andB)

the conditions X=0 and X#0 are strongly coupled. Changing the
value of X between 0 and non-0 (in either direction) always changes
both conditions.

Weakly coupled conditions are those conditions where changing one
condition sometimes (but not always) changes the others. For
example, in the expression

X=0orX=1orX=3

the conditions X = 0, X = 1 and X=3 are weakly coupled. Changing
the value of X from 0 to 2 only changes the first condition, while
changing the value of X from 0 to 1 changes the first two conditions.

The relationship between two or more conditions such that they are
not free to assume any possible condition combination between them
(i.e., they cannot be varied independently in all circumstances).



Coverage Set

Expression Tree

Independence

For an expression, a set of condition combinations such that an
independence pair for each condition in the expression is present.
Condition combinations are generally represented by their decimal
number. For the expression

Aor (BandC)

one Coverage Set would be:
(1,2,3,5) where

(1,5) is the independence pair for A
(1,3) is the independence pair for B
(2,3) is the independence pair for C

A graphical (tree) representation of an expression where operators
and operands occupy the nodes of the tree, and the edges (arcs)
connect operands to their operators. Below is an expression tree for
the expression

B, and ((I, = IF(1,,1,)) or (B, = BF(l,,1,)))

I, IF(L) B, BF(lL)

1 2

In the above expression tree, where B is for Boolean, | is for Integer,
and F is for Function, the conditions are

B, {LHS operand of AND}
(I, =1F@,L)) or (B,=BF(l,l.)) {RHS operand of AND}
I, = 1F(1,,1,) {LHS operand of OR}
B, = BF(l,L.) {RHS operand of OR}
B, {LHS operand of “="}
BF(l,,1,) {RHS operand of “="

Note that conditions can be nested within other conditions.

A condition possesses independence if there exists two truth vectors
such that:

a. both truth vectors have differing results (i.e., one is True and the
other is False);

Xi



Independence Pair

Karnaugh Map

KV-Map

LHS

LRM
LRU
MCDC

Masking

b. the condition of interest has differing values (i.e., in one truth
vector the condition is True and in the other it is False); and

c. all other conditions either do not change value or are masked.

The combination of two truth vectors, one True and one False, that
together demonstrate the independence of a condition in a Boolean
expression. This condition will change values between the two truth
vectors, and all other conditions either will not change or will be
masked.

A specific method for formatting a truth table such that adjacent cells
in the map differ by one condition difference (T vs. F) in the
condition combination. Also known as a KV-Map. Karnaugh maps
for the AND and OR operators are presented below:

HS HS
RHs ~F T RHS . F T
FlF FlF
0 2 0 2
TIE|T TITI|T
1 3 1 3
AND OR

An abbreviation for a Karnaugh-Veitch map. Also known as a
Karnaugh Map.

Left-Hand Side. The operand which appears on the left-hand side of
a binary infix operator.

Ada Language Reference Manual.

Line replaceable unit.

Modified Condition Decision Coverage.

The process of setting the RHS (LHS) operand of an operator to a
value such that changing the LHS (RHS) operand of that operator

does not change the value of the operator.

For an AND operator, masking of the RHS (LHS) can be achieved by
holding the LHS (RHS) False. Recall from Boolean algebra that

X AND False = False AND X = False
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Masking MCDC
Normal-Form Boolean
Operator

RHS

Short-Circuit Form
Boolean Operator

Truth Vector

Unique Cause MCDC

no matter what the value of X is.

For an OR operator, masking of the RHS (LHS) can be achieved by
holding the LHS (RHS) True. Recall from Boolean algebra that

X OR True = True OR X = True
no matter what the value of X is.

A form of MCDC that allows all possible forms of masking to be
used to show a condition’s independence.

A binary Boolean operator (AND, OR, XOR) which evaluates both
the LHS and RHS before deciding an outcome.

Right-Hand Side. The operand which appears on the right-hand side
of either a unary or binary infix operator.

A binary Boolean operator (AND, OR) which evaluates the LHS
first, and then conditionally evaluates the RHS.

For the short-circuit AND, if the LHS is False, then False is returned
and the RHS is not evaluated. If the LHS is True, then the RHS is
evaluated and that result is returned.

For the short-circuit OR, if the LHS is True, then True is returned and
the RHS is not evaluated. If the LHS is False, then the RHS is
evaluated and that result is returned.

For a Boolean function or expression, a specific condition
combination and the function/expression result. For example, for the
expression

Aand (B or C)

one truth vector is 4:F-tff, where the condition combination 4:(tff)
applied to the expression results in an F (False).

A form of MCDC which allows for masking to be used only in the
case of coupled conditions to show a condition’s independence.
Otherwise, only the condition of interest is allowed to change
between the two truth vectors of the independence pair. The
condition’s change is (generally) the unique cause of the change in
the expression’s outcome, hence the name.
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EXECUTIVE SUMMARY

This report compares three forms of the Modified Condition Decision Coverage (MCDC)
criterion. MCDC is a structural coverage criterion used in the “Software Considerations in
Airborne Systems and Equipment Certification Document,” to assist with the assessment of the
adequacy of the requirements-based testing process. This level of coverage is required for level
A software per DO-178B. The purpose of these comparisons is to provide data to support a
rational choice for what form of structural coverage to require for level A software.

The three forms of MCDC investigated include:

Unique-Cause MCDC: This form is the one defined in “Software Considerations in
Airborne Systems and Equipment Certification Document.”

Unique-Cause+Masking MCDC: This form is the one suggested in “Applicability of
Modified Condition Decision Coverage to Software Testing,” that addresses the coupling
problem. This form is included because it has been used in airplane certifications and as
a reference by automated coverage analysis tool vendors.

Masking MCDC: This is the weakest possible form of MCDC in that it allows for the
independence of a condition to be determined strictly by the Boolean Difference Function
discussed in Switching and Finite Automata Theory. The other forms place additional
constraints on an independence pair beyond those imposed by the Boolean Difference
Function. This form is included because if it is found acceptable, then all other stronger
forms will also be acceptable.

The comparisons performed in this study address the following four major questions:

1.

Why is there a need for structural coverage in general?

It is well known that all forms of verification could miss important features of the system
being implemented. Examples in this report demonstrate requirements-based verification
missing important features of the implementation. Structural coverage in the software
system development process is a check and balance on requirements-based verification.
Structural coverage helps ensure that the requirements-based verification process has paid
attention to certain features of the implementation.

Why is there a need for MCDC in particular?

This study shows that MCDC is a form of structural coverage providing equivalence class
and boundary value coverage of the implementation. MCDC provides this coverage by
ensuring that the verification process executes each side of the subdomain partitions
defined by a decision’s conditions in a significant manner.

There are known problems/limitations with the current definition of MCDC. How should
these be addressed?
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The known (claimed) problems addressed in this study are:

a.

MCDC doesn’t find errors.

This study shows that test sets satisfying all forms of MCDC are capable of
detecting certain types of errors, if they are present. However, as with all forms of
nonexhaustive testing, there is a probability associated with the detection of
errors, and MCDC isn’t guaranteed to detect all errors. This study shows that
MCDC has a high probability of error detection for the cost incurred (number of
tests), especially when compared with other coverage criteria specified in DO-
178B (Statement Coverage, Decision Coverage).

MCDC, as defined, can’t be achieved for all expressions. How should these be
addressed?

A MCDC solvable expression is a Boolean expression for which there is at least
one coverage set given a specific definition for MCDC. This study shows that
Unique-Cause MCDC is solvable for a small portion of the theoretical Boolean
expression space. Unique-Cause+Masking MCDC is shown to have wider
applicability and Masking MCDC is shown to have even wider applicability. Itis
shown empirically, with expressions extracted from five level A line replaceable
units (LRUSs), that this problem with MCDC may not be as large a problem as
some have claimed.

MCDC, as defined, ignores the relational operator and operand part of the logic
space (i.e., MCDC applies only to Boolean objects).

Extensions to MCDC for relational operators operating on non-Boolean operands
are defined. It is shown how to incorporate these extensions into the definition of
MCDC and apply them. Empirical data is provided supporting the magnitude of
this problem.

Multiple interpretations of MCDC exist and have been used in airplane certifications.
Which one (if any) should be standardized on?

To address this question, theoretical and empirical answers to the following questions
were obtained for the three forms of MCDC:

What is the minimum number of tests necessary to satisfy the three different
forms?

The theoretical analysis shows that Masking MCDC would be the easiest form to

satisfy as it required fewer tests than the other forms of MCDC. Two empirical
investigations, one using logic expressions extracted from five LRUs and the
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other using generated expressions to cover the entire singular Boolean expression
(SBE) space, confirmed the theory.

b. What is the minimum probability of logic error detection for the three different
forms?

A model was developed for the error detecting capabilities of any coverage
criterion. This model defined an error as having an incorrect Boolean function in
the implementation (i.e., the implementation was not what was specified). Using
this model, a theoretical analysis shows that even though Masking MCDC could
allow fewer tests than Unique-Cause MCDC, its performance in detecting
incorrect Boolean functions was not that much different. An empirical analysis
performed against logical expressions extracted from five LRUs not only
confirmed the theory, but also showed that the difference was smaller than the
theory predicted. An additional empirical analysis using generated expressions
covering the SBE space and injected faults using the rules of mutation also
showed that the performance of the three forms of MCDC was nearly identical
from the probability of error detection viewpoint.

C. How many independence pairs per condition are allowed by the three different
forms?

An empirical investigation shows that there were more independence pairs for
Masking MCDC than for either of the unique-cause forms.

d. How many minimal test sets exist on average for the three different forms?

An empirical investigation shows that Masking MCDC is satisfied by a greater
number of coverage test sets.

Based on the results from all the different analyses performed during this study, it was concluded
that Masking MCDC should be the preferred form of MCDC. Masking MCDC requires
equivalent numbers of tests to the currently defined Unique-Cause MCDC, which allows it to
provide equivalent error detection. However, Masking MCDC allows for more independence
pairs per condition and more coverage test sets per expression, which allows it to be applied
more cost-effectively.
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1.

INTRODUCTION.

This is the final report for a study into different forms of Modified Condition Decision Coverage
(MCDC). MCDC is a structural coverage criterion used in DO-178B [1] to assist with the
assessment of the adequacy of the requirements-based testing process. This level of coverage is
required for Level A software [DO-178B pg. 74, table A-7].

This study provides detailed data that supports a rational decision about what level of structural
coverage to require for what has been identified as high-integrity or safety-critical software. This
study was undertaken in response to a number of issues:

a.

It is not generally understood what structural coverage in general, and MCDC in
particular, is supposed to be doing (i.e., why is it done? why is it needed?).

It has been claimed that MCDC is nonvalue added (i.e., it does not find errors).

In section 2, with support from appendices A and B, background material was provided
on coverage and MCDC. The primary purpose of structural coverage is not to find errors
per se. Instead, structural coverage is a check and balance on the requirements-based
verification process. This check and balance is necessary because the requirements-based
verification can miss important features of the implementation. The examples that
support this are in appendix A. It will also be shown that MCDC is a weak measure [2]
of equivalence class and boundary value coverage. The support material for this is
contained in appendix B. Section 4 shows how to extend the definition of MCDC so that
it is a strong measure [2] of equivalence class and boundary value coverage. When one
takes all three together (section 2, appendices A and B), it will be shown that the most
important function of structural coverage is for process assurance and improvement.

Section 8 investigates the adequacy of the different forms of MCDC in the software
mutation (or fault injection) domain. The data from this investigation shows that test sets
that satisfy all forms of MCDC are capable of detecting certain types of errors, if they are
present. The data also shows that test sets that satisfy MCDC are not capable of detecting
all errors. The issue of whether test sets satisfying MCDC are cost-effective for the errors
they do find is not addressed in this report. As was stated previously, this report takes the
view that structural coverage, in general, and MCDC in particular, is for process
assurance. As is addressed in sections 5 and 6, the main advantage of MCDC is its cost
effectiveness from the probability of error detection viewpoint.

It has been claimed that MCDC is difficult to understand (i.e., what does it mean?).

Section 3, with support from one of the references that is on the web [3], clarifies
MCDC’s definition. A mathematical definition is provided which applies to the (NOT,
AND, OR) Boolean operators. Then a graph coloring definition is provided which
applies to the complete set (NOT, AND, OR, XOR, =, #, <, <, >, 2) of Boolean operators.
This definition allows you to overlay two colored graphs for an expression and two test



cases. If yellow plus blue make green in the overlay, then you have MCDC. Appendix B
also provides some help here, as it shows what MCDC does.

C. MCDOC, as defined, cannot be achieved for all expressions. How is this dealt with?

MCDC solvable expression is referred to as a Boolean expression for which there is at
least one coverage set. Section 2.4 shows that only a small percentage of theoretically
possible Boolean expressions are solvable for MCDC as defined in DO-178B. Section 3
defines three different forms of MCDC, one of which is the DO-178B form. Section 7
addresses the issue of MCDC solvability in general. Section 7.3 shows that there are
forms of MCDC that have wider applicability than the DO-178B form. Appendix C
contains an abstract form of the expressions extracted from the Ada source code of five
Level A systems. Using this empirical data from appendix C, the problem with MCDC,
as defined, may not be as large a problem as some have claimed.

d. MCDC, as defined, ignores the relational operator and operand part of the logic space
(i.e., MCDC applies only to Booleans, what is to be done about non-Booleans?).

Note: In this report, the term Booleans is used as a noun for any Boolean condition,
expression, function, object, operand, or operator.

Section 3 defines three different forms of MCDC. These definitions apply to relational
operators operating on Boolean operands. Section 4 defines extensions to MCDC for
relational operators operating on non-Boolean operands. It will also be shown how to
incorporate these extensions into the definition of MCDC and how to apply them.
Appendix C provides empirical data that supports the magnitude of this problem.

e. Multiple interpretations of MCDC exist and have been used in airplane certifications.
Which one (if any) should be standardized on? How does one go about making that
choice?

Section 3 defines three different forms of MCDC. In sections 5, 6, and 8, a number of
theoretical and empirical analyses are performed into the performance of the different
MCDC forms. The minimum number of tests in a test set, the minimum probability of
logic error detection, the number of independence pairs per condition, and the average
number of coverage compliant minimal test sets per expression have been investigated.
The methodology defined therein can be used to evaluate other alternative coverage
criteria. The analyses contained in this report suggest that Masking MCDC, as defined in
section 3.2.3, should be the definition which is standardized on.

As has been mentioned several times, three different forms of MCDC are defined in section 3.
One of those forms is the one defined in DO-178B, which is referred to as Unique-Cause MCDC.
Including this form makes sense, since that is in the current guidelines. One of those forms is the
one suggested in reference 4 that deals with the coupling problem, which is referred to as
Unique-Cause + Masking MCDC. Including this form makes sense, as it has been used in
airplane certifications and as a reference by automated coverage analysis tool vendors. One of



those forms is the weakest possible form of MCDC, which is referred to as Masking MCDC.
This form is the weakest in that it allows for the independence of a condition to be determined
strictly by the Boolean Difference Function [5]. The other forms place additional constraints on
an independence pair beyond those imposed by the Boolean Difference Function. Inclusion of
this form makes sense since, if it is found acceptable, then all other stronger forms will also be
acceptable. Other stronger forms of MCDC can be defined. This report only looked at the three
defined.

2. BACKGROUND ON COVERAGE.

This section provides background material on coverage. First, a justification is given as to why
coverage of any kind should be a part of the standard software development process, in particular
the verification process. The discussion is specialized down to the issue of structural coverage.
Appendix A provides a detailed example supporting the structural coverage position. The
discussion is specialized down to the MCDC itself. Appendix B provides the detailed examples
that support the MCDC position. Finally, the need for looking at multiple definitions for MCDC
is discussed.

2.1 WHY COVERAGE?

This section addresses the question why should coverage be part of the verification process?
There are three major reasons for using coverage, the first two of which are interrelated:

a. The primary point of coverage, and its measurement, is to help manage risk by giving the
people doing, managing, and auditing the verification activities an empirical sense of the
extent of verification accomplished (i.e., adequacy). Note that there are a large number of
different classes of coverage and associated measures, with different levels of
thoroughness within the classes.

b. Secondarily, measurement of coverage provides an exit criteria for when to stop the
verification process (i.e., completion).

C. Finally, coverage and its measurement supports process assurance, along with process
improvement.

The first two above are interrelated in that they are saying an exit criteria is needed for the
verification process. Figure 1 shows a simplified flow diagram for the Verification Process
model.
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FIGURE 1. SIMPLIFIED VERIFICATION PROCESS

This simplified verification process can be logically defined in three steps, as described below:

a.

First, a well-defined set of heuristics is used as a strategy to develop a set of verification
procedures. Early in the development life cycle, the verification procedures can be
requirements for any combination of inspections, analyses, or tests to be applied against
some artifact of the development process (which will be produced later in the life cycle).
Later in the life cycle, the verification procedures can be the actual analysis methods,
inspection checklists, or test cases to be applied against the artifacts of the development
process.

Second, exit-criteria are used to determine when you have an adequate set of verification
procedures. This is stated in the plural because two different reasons were given earlier,
adequacy and completion, for coverage and they may have different criteria. After
developing what is believed to be an adequate set of verification procedures, coverage is
then determined against the exit-criteria to determine if it is done. It helps tremendously
if the exit-criteria are objective.

Third, if coverage is not satisfied (i.e., it is low, less than 100% of the target) the
heuristics used must be improved to create the verification procedures and develop
additional procedures until the exit-criteria are satisfied. Additionally, determine why the
coverage was low and use that as feedback for process improvement. For example,
coverage was low because verification of error conditions was superficial. This implies
that the development process needs to be strengthened in the area of considering errors.

Notice that in the above discussion, coverage was used in a very broad sense as being applicable
to multiple forms of verification. In most cases, when the topic of coverage comes up, it usually
applies only to testing, which is the most popular form of verification currently applied. The
broader form of applicability is intended within this report.

2.2 WHY STRUCTURAL COVERAGE?

This section addresses the question why should structural coverage be part of the verification
process? The assumption behind this question is that if the requirements are adequately covered
with requirements-based verification, then the implementation (details) should be unimportant.



Unfortunately, both requirements-based verification and the corresponding requirements
coverage criteria have some fundamental problems:

a. They are mostly based on heuristics (i.e., rules of thumb/opinion). This means that they
will mean different things to different people. This also means that they will have
different effectiveness on different projects.

b. They are mostly subjective (an opinion) as opposed to objective. This makes them
unrepeatable and potentially unmeasurable. What is adequate in one instance may be
inadequate in another, and overkill in yet another instance.

C. They tend to ignore the implementation because they are built on abstract models of the
system. This may cause them to miss important features in the implementation (i.e., the
tests are not telling you what you think they are). This is demonstrated with the type-of-
triangle problem detailed in appendix A.

The analysis in appendix A shows that requirements-based verification may or may not be good
enough for particular implementations. It also shows that verification that is good enough for
one implementation may or may not be good enough for another. So what was the major thing
that happened in appendix A? The answer lies at the heart of verification theory. There were
two different approaches taken to the problem. These differences are shown in figure 2.
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FIGURE 2. ALTERNATIVE APPROACHES FOR TYPE-OF-TRIANGLE PROBLEM

The first approach shown in the left of figure 2 is that of determining validity first, and then if the
triangle is valid determining its type. This is the approach taken in the statement of the
requirements, as well as some of the implementations. It should be no surprise then that it
appears that requirements-based verification would work well for those implementations. The
second approach shown in the right of figure 2 is that of determining type first, and then
determining validity. As the diagrams show, it is not to be expected that the verification for the
validity first check would work well for the type first check, and indeed this is the case for the
implementation that uses the second approach. The requirements-based verification has a
completely different set of assumptions behind it, which are not valid in the implementation.
The opposite is also true, verification which is good for the second approach may not do very
well for implementations following the first approach, again because of the assumption
mismatch.



The above discussion shows that an expanded verification process model is needed, one that
employs both requirements coverage as well as structural coverage. Figure 3 shows this
expanded verification process model. In this model there are two sets of exit-criteria to satisfy.
First, the coverage of the requirements must be satisfied. Once that has been achieved, then the
coverage of the software structure must be satisfied.
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FIGURE 3. EXPANDED VERIFICATION PROCESS

Notice that a process for generating new verification directly off the uncovered structure was not
added, even though that will be the first temptation. Instead, what is shown is that if the normal
heuristics does not get to 100% structural coverage, then improve (i.e., fix) the heuristics.
Generating new verification directly off the structure in order to satisfy structural coverage is not
as effective as improving the requirements-based verification. Improving the requirements-based
verification actually improves our understanding of how the system is supposed to perform,
while generating new verification off the structure only demonstrates how the system does
perform.

In truth, the coverage exit criteria in figure 3 go on somewhat in parallel. That is because failures
in the structural coverage area generally point to failures in the development process, and
insufficient coverage of the requirements domain.

2.3 WHY MCDC?

This section addresses the question why should MCDC be part of the verification process?
There are four steps in answering this question:

a. All structural coverage measures investigate/spotlight some aspect of the implementation
relationships present within the system. DO-178B has decided on three:

. Statement Coverage
. Decision Coverage
. Modified Condition Decision Coverage

These can be abstracted in the following manner:



- Every statement present within the system represents some functionality in the
real world that the development process (Requirements Process, Design Process,
Coding Process, etc.) felt the system had to provide. If statements are left
uncovered by the requirements-based verification process, then that process failed
to consider some aspect(s) of the systems implemented functionality. Statement
coverage ensures that the verification process has considered sufficient
operational scenarios to execute every statement in at least one operational
context.

- Every decision present within the system represents a situation in the real world
that the development process felt had to be handled specially. This is because
each decision partitions (divides) the real world (operational space) into two
special cases, one to be handled one way and the other to be handled differently.
If branches (decision outcomes) are left uncovered by the requirements-based
verification process, then that process failed to consider the special cases the
development process thought were important. Decision coverage ensures that the
verification process has considered sufficient operational scenarios to execute
every special case the system was designed for in at least one operational context.

- Every condition present within the system is supposed to uniquely affect the
choice between special cases under the right circumstances (i.e., each condition
guards a boundary between different equivalence classes, multiple equivalence
class boundaries are potentially present within a multicondition decision). If the
requirements-based verification process does not demonstrate a condition’s
independence, then that process failed to consider those situations where that
condition alone was significant to determining how the system would respond. In
essence, the condition’s effect on the correct operational behavior of the system
has not been demonstrated. MCDC ensures that the verification process has
considered sufficient operational scenarios to demonstrate that each condition is
able to correctly affect the operational behavior of the system in at least one
operational context.

These implementation relationships are supposed to be significant within the real world
the system is to operate within. The implementation process is not supposed to introduce
functionality or special cases just for the sake of building it. In many cases, real-time
systems have enough trouble delivering the functionality and handling the special cases
they are supposed to without adding additional bells and whistles. When these
relationships are left uncovered, one obvious question is were they really significant
enough to be present within the system?

These implementation relationships are supposed to operate/function correctly. If indeed
the functionality and special cases reflect what the system is to do, then it should do it
correctly. Nobody likes it when their systems misbehave. This is especially true when
system misbehavior can result in unacceptable loss, which is what distinguishes a high-
integrity/safety-critical system.



d. Whenever the requirements-based verification fails to achieve coverage, there are
problems within the development process which need investigation. The most prevalent
problem noticed by the author of this report is undocumented implementation (i.e., design
and/or coding) decisions. Most of these decisions should have resulted in derived (i.e.,
low level) requirements, which the requirements-based verification process should have
addressed. It is the presence of all the “shoulds” in the previous statement that points to a
flawed development process. Fixing those flaws is considered in today’s software
engineering environment to be of paramount importance. In essence, the major usage of
coverage is for process assurance and improvement, not for finding errors in the product.

MCDC should be used as a structural coverage criterion because it attempts to provide a cost-
effective form of logic verification. In essence, MCDC can be thought of as a (weak) measure of
the coverage of equivalence classes and boundary values. Full details of this are contained in
appendix B.

Unlike some other forms of structural coverage, MCDC can be applied to any representation
(graphical or textual, mathematical or not) where logic is expressed. MCDC can also be applied
anywhere in the development process (i.e., to any life cycle artifact). MCDC applied to the
source code is the lowest level of coverage, while MCDC applied at the requirements would be
the highest level.

One would hope that if you covered the requirements to the MCDC level, then coverage of the
source code would also be achieved. Unfortunately this is not guaranteed to happen, as the
analyses in appendix A for implementations Nos. 2 (see A.4) and 4 (see A.6) show. Given the
limited success requirements-based verification obtained on something as simple as the triangle
problem, consider how limited the performance could be on a real system. This is just further
justification for the necessity of structural coverage and something beyond Statement Coverage
and Decision Coverage.

2.4 WHICH MCDC?

Many interpretations exist for a coverage criterion satisfying the intent of MCDC. Some of these
interpretations result in verification that is weaker at detecting errors than others. Some of these
interpretations result in verification that is more costly than others. The intent of this report is to
provide data supporting a choice between the different interpretations (forms) studied herein.
Other possibilities than those studied exist, but their analysis will have to be performed
elsewhere.

One may ask why there is a need to look at these different interpretations for MCDC. To
understand the major motivation behind this study, consider the following. MCDC is defined in
reference 1 through the following (excerpted) definitions:

« Modified Condition  Every point of entry and exit in the program has been invoked at least
Decision Coverage  once, every condition in a decision in the program has taken all
possible outcomes at least once, every decision in the program has

taken all possible outcomes at least once, and each condition in a



decision has been shown to independently affect that decision’s
outcome. A condition is shown to independently affect a decision’s
outcome by varying just that condition while holding fixed all other
possible conditions [pg. A-10].

Decision A Boolean expression composed of conditions and zero or more

Boolean operators. A decision without a Boolean operator is a
condition. If a condition appears more than once in a decision, each
occurrence is a distinct condition [pg. A-8].

Condition A Boolean expression containing no Boolean operators [pg. A-7].

From the above definitions the following can be derived:

a.

Every Boolean expression in the program will need to evaluate to both True and False
(since they can only assume those two values, they constitute every possible outcome).

Every condition in the program will need to evaluate to both True and False (same
reasoning as (a.) above).

Conditions are either Boolean valued objects (variables and constants) or functions which
return Boolean results. These functions can either be user defined, language defined, or
the (language defined) relational operators (for objects of non-Boolean types).

Conditions that occur more than once in a decision need each occurrence to demonstrate
its independence.

It is with this last derivation that a problem appears. The problem concerns the inability
to test certain expressions under the above set of definitions. Notice that this definition
sequence for MCDC is requiring a unique cause for a change in decision outcome due to
a single condition change to show that condition’s independence. This is from the
requirement that all other conditions are held fixed while the condition of interest is
changed (hence, the term unique-cause).

Consider the following expression: (A and B) or (A and C)
By the definitions given above, this MCDC decision consists of the

. first occurrence of A (in (A and B)),

. only occurrence of B,
. second occurrence of A (in (A and C)), and
. only occurrence of C.

The problem comes about when testing the first occurrence of A. By the definitions in
DO-178B, the first occurrence of A must be toggled between True and False, changing
the outcome of the expression, while holding all other possible conditions (B, second
occurrence of A, C) fixed. It is not possible to hold the second occurrence of A fixed



while changing the first occurrence, so (B, C) needs to be held fixed. However, DO-
178B provides no guidance on how to hold (B, C) fixed in order to demonstrate the
independence of each occurrence of (A) individually.

This limits the application of this definition for MCDC to singular Boolean expressions
(SBEs). Boolean functions can be categorized into three classes:

Degenerate functions—these are functions which are not a function of all the conditions
present in the expression describing the function (i.e., some of the conditions in the
expression are redundant, therefore the expression can be reduced/simplified to an
expression with fewer conditions) [5]. For example, consider the following expression:

(A and B) or (not Aand C) or (A and C and D) or (C and D and E)

Table 1 is a partial truth table for the above expression showing the condition
combinations when each of the subexpressions in the above expression will cause the
expression to evaluate to True. There is a dot in the subexpression’s column for those
condition combination rows that cause the subexpression to return True. Looking at the
column for the subexpression (C and D and E), notice that none of the rows where dots
are present are unique (i.e., are not covered by another of the subexpression). This means
that this subexpression can be removed from the expression, and the resulting
(simplified/reduced) expression will still describe the same Boolean function. Since this
subexpression is the only one in which the condition E occurs, this means that the
Boolean function described by this expression is a function of the conditions (A, B, C, D)
only. Since this Boolean function is a function of four conditions, not five, it is identified
as a degenerate function.

TABLE 1. PARTIAL TRUTH TABLE FOR THE EXPRESSION
(A and B) or (not Aand C) or (A and C and D) or (C and D and E)

Aand B not Aand C Aand Cand D Cand D and E
4 FFTFF ®
5 FFTFT o
6 FFTTF ®
7 FFTTT o o
12 FTTFF ®
13 FTTFT ®
14 FTTTF ®
15 FTTTT ® ®
22 TFTTF ®
23 TFTTT ® ®
24 TTFFF ®
25 TTFFT ®
26 TTFTF ®
27 TTFTT ®
28 TTTFF ®
29 TTTFT ®
30 TTTTF ® o
31 TTTTT ® ® ®
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Singular Boolean Expressions—these are functions which are not degenerate and can be
described by expressions where all of the conditions have a single occurrence only.

Nonsingular Boolean Expressions—these are nondegenerate functions which cannot be
described by expressions where every condition has a single occurrence only. For
example, consider the following expression:

(A and B and C) or (not A and not B and not C)

Table 2 is a partial truth table for the above expression. This table shows that either
subexpression cannot be removed. Additionally, since both of the subexpressions are
irreducible minterms [5], either subexpression cannot be removed. Hence, no singular
Boolean expression exists for this Boolean function.

TABLE 2. PARTIAL TRUTH TABLE FOR THE EXPRESSION
(A and B and C) or (not A and not B and not C)

Aand B and C not A and not B and not C
0 FFF d
7 TTT ®

As stated previously, the DO-178B definition for MCDC is restricted to SBEs. This
limits the usefulness of this definition if the number of SBEs represent a small fraction of
the nondegenerate functions. This is indeed the case as figure 4 shows. Figure 4 is a
semilog plot showing the number of Boolean functions which are degenerate, which are
not degenerate, and can be described by a SBE, and which are not degenerate and cannot
be described by an SBE. The percentage of SBE functions is growing increasingly
insignificant as the number of conditions grows.
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Table 3 provides the same data as figure 4 but is extended to include the numbers for five
conditions.

TABLE 3. BOOLEAN FUNCTION CLASSIFICATION PER CONDITION LEVEL

No. Conditions | No. Degenerate No. SBE No. Non-SBE
1 2 2
2 6 8 2
3 38 114 104
4 942 2,154 62,440
5 325,262 19,286 4,294,622,748

From the theoretical point of view, the above data indicates that the DO-178B definition for
MCDC has a very limited range of applicability. This suggests that an alternative applicable to
the non-SBEs needs to be found. Further analysis is provided in section 7 of this report.

3. DEFINITIONS FOR MODIFIED CONDITION DECISION COVERAGE.

This section defines the three forms of MCDC studied for this report. The forms of MCDC
studied herein are known as

. Unique-Cause MCDC,
. Unique-Cause + Masking MCDC, and
. Masking MCDC.

First, start with a base definition for MCDC itself. The justification for this definition is
presented in reference 12. MCDC is defined as

. every statement in the program has been invoked at least once.
. every point of entry and exit in the program has been invoked at least once.
. every control statement (i.e., branchpoint) in the program has taken all possible outcomes

(i.e., branches) at least once.

. every nonconstant Boolean expression in the program has evaluated to both a true and a
false result.
. every nonconstant condition in a Boolean expression in the program has evaluated to both

a true and a false result.

. every nonconstant condition in a Boolean expression in the program has been shown to
independently affect that expression’s outcome.

The difference between the forms of MCDC that are studied is in the definition for showing
independence (final clause in the base definition above). Therefore, the definitions given in
section 3.2 concentrate on what it means to show a condition’s independence. The independence
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criterion was also concentrated on since the empirical data used in this study consists of Boolean
expressions extracted from the source code of five airborne systems (appendix C) and Boolean
expressions built according to rules of mutation (appendix D).

3.1 DEFINITION OF INDEPENDENCE PAIRS.

A part of MCDC is defined as showing the independence of each condition within a Boolean
expression. This means that the expression’s outcome (i.e., result evaluation) will be toggled
(between True and False) as a result of each condition being toggled (between True and False) in
a way that the condition of interest is the only condition which has influence on the expression’s
outcome during the toggling.

This results in a need for two tests, known as an independence pair, for each condition within a
decision. This is not to say that these two tests are each unique to the condition. Generally, one
or both of these tests can be paired with other tests to form an independence pair for a different
condition.

This section provides the definition for what constitutes legal MCDC test pairs to show a
condition’s independence (independence pairs). This definition is given in two parts.

The first part is a formal mathematical definition. This definition is not complete in that the
mathematics used do not recognize either the XOR operator (it is not considered a primitive
Boolean operation) or the relational operators (=, #, <, <, >, =) operating on Boolean objects.
This document does not extend the mathematics to properly handle the XOR and relational
operators. Instead an equivalent alternative which handles the XOR and relational operators
properly is given in part two.

The second part is a graph-coloring algorithm. This algorithm also has mathematics behind it,
which properly handle the XOR and relational operators. This is conceptually the easiest
definition to understand.

3.1.1 Mathematical Definition.

This section defines an independence pair in terms of the Boolean Difference Function [5]. This
function works for expressions that are written in terms of Boolean variables and the Boolean
operators (NOT, AND, OR). The extensions needed for the XOR operator and the relational
operators (=, #, <, <, >, =) operating on Boolean objects are not made here.

The independence pair can be defined through the following derivations.
Let F() be a (Boolean) function of n Boolean conditions. This function will be represented by a
Boolean expression in the software (either in a program or its documentation) under analysis.

Note that a Boolean function can be represented by multiple Boolean expressions.

. Let c = (cy, ..., Cj, ..., Cn) be a vector of n Boolean values (conditions) (i.e., a Boolean n-
vector, also known as a test).
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The Boolean Difference of F(c) with respect to c;, denoted dF(c)/dc;, is defined as [5]:
oF(c)/éc; = F(cy, ..., Ci, ..., Cn) CEL;, ..., 0Ci, ..., Cp)

The Boolean difference of F(c) with respect to ¢; is False if toggling just c¢; does not toggle
(change) the outcome and is True if toggling just c; does toggle (change) the outcome. Using the
Boolean difference, a set of constraints can be calculated which must be satisfied if the
independence of a condition ¢; are to be shown.

For Masking MCDC, the independence pair can be formally defined as follows:

Let x and y be two (test) vectors
x and y form a Masking MCDC independence pair for the i condition (c;) IFF

(xi =—y;) and
(F(x) == F(y)) and
(0F(x)/dx;) and
(OF(y)/3yi)

What the formal mathematics for the Masking MCDC independence pair is saying is the

condition ¢; must toggle (between True and False) between the two tests;

expression must return different results for the two tests (i.e., toggle between True and
False);

condition ¢; must have influence on the outcome of the expression when the first test (x)
is applied; and

condition ¢; must have influence on the outcome of the expression when the second test
(y) is applied.

For Unigue-Cause MCDC, the independence pair can be formally defined as follows:

Let x and y be two (test) vectors
x and y form a Unique-Cause MCDC independence pair for the i condition (c;) IFF

(foralljinl.n,j#i, x;=Yy;) and

(xi = =yi) and

(F(x) = =F(y)) and

(OF(c)/dci), where cj=xj =y, foralljin1..n,j#1i.

Note that under the first two clauses, (0F(x)/dx;) = (0F(y)/dy;), so the fourth clause could have
read either “OF(x)/dx;” or “0F(y)/dy;.” The Boolean Difference Function only needs to be
calculated once since all other conditions are held fixed.
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The changes between the two forms of MCDC are highlighted by the mathematical definitions.
Masking MCDC allows any number of conditions to change so long as only the condition of
interest has influence on the outcome of the expression. This generally allows for more coverage
test sets (i.e., test sets that satisfy a coverage criterion).

For example:
Let F() = Aor (BandC)
Then

OF(A or (B and C))/0A =

(False or (B and C)) XOR (True or (B and C)) =
(B and C) XOR True =

not (B and C)

To show A’s independence, the subexpression must ensure that “B and C” remains False while
toggling A between True and False.

The Unique-Cause form of MCDC will require that B and C remain fixed at one of the condition
combinations (0:(FF), 1:(FT), 2:(TF)) while A is toggled. This results in three test sets:

. (O:(FFF), 4:(TFF))
. (1:(FFT), 5:(TFT))
. (2:(FTF), 6:(TTF))

Masking MCDC allows B and C to change between any two of the condition combinations ((FF),
(FT), (TF)) while A is toggled. This results in nine test sets:

. (O:(FFF), 4:(TFF))
. (0:(FFF), 5:(TFT))
. (0:(FFF), 6:(TTF))
. (1:(FFT), 4:(TFF))
. (1:(FFT), 5:(TFT))
. (1:(FFT), 6:(TTF))
. (2:(FTF), 4:(TFF))
. (2:(FTF), 5:(TFT))
. (2:(FTF), 6:(TTF))

Section 6 provides the empirical data substantiating the claim of more coverage test sets. This
larger number of coverage test sets is advantageous in that requirements-based testing has a
larger target to hit for satisfying structural coverage. This should reduce both the difficulty and
cost of satisfying MCDC.
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3.1.2 Graph-Coloring Definition.

This section defines an independence pair in terms of coloring a graph. Unlike a Boolean
function, a Boolean expression can be represented in a parse tree, i.e., an expression tree. This
data structure is more properly known as a graph, and a graph can be colored (or decorated) with
annotations. The annotations that will be used are the values of execution derived from applying
a specific pair of tests. The differences between the colors of the two graphs representing each
test result in a colored graph identifying the condition(s) that influenced the change in the
expression’s outcome.

The independence pair can be defined as follows.

. Let F() be a Boolean function (expression) of n Boolean conditions.

. Let ¢ = (cy, ..., Ci, ..., Cn) be a vector of n Boolean values (conditions) (i.e., a Boolean n-
vector, also known as a test).

. Let EF() be an expression tree for the Boolean expression of F().
An expression tree EF(c) is evaluated for a test ¢ according to the following rules:
a. Set the (leaf) conditions of the tree to c, and then

b. walk the values up to the root through the operators according to the rules of Boolean
algebra. (Note: for short-circuit forms, the values on the right-hand side (RHS) might all
be changed to Not-Executed depending on the value of the left-hand side (LHS), i.e., if
the LHS of an And-Then is False, the RHS is changed to Not-Executed, if the LHS of an
Or-Else is True, the RHS is changed to Not-Executed.)

Given a Boolean function F() and two truth vectors x and y for the expression,
. Construct an expression tree for each truth vector, EF(x) and EF(y)
. Construct an influence tree

IE(F(x),F(y)) = EF(x) tree_xor EF(y)

by applying the tree_xor function between corresponding annotations in the two
expression trees to the corresponding annotation in the influence tree. The tree_xor
function is an extension of the standard XOR function designed to handle the
nonexecutions of the RHS possible with short-circuit operators, and is defined in figure 5.

Let the Influence_Set be the set of conditions in the influence tree that have a path of all Trues to
the root (i.e., these are the conditions which changed between the two tests and had the effect of
that change make it to the outcome). If there is a single condition c, in the influence set, then x
and y form a Masking independence pair for the condition (i.e., x and y show c’s independence).
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If additionally c, is the only condition which has a True in the influence tree (i.e., only ¢, changed
between the two tests), then x and y form a Unique-Cause independence pair for the condition.

HS
F T NE

FIF | T|F

RHS

T T F|F

NE| F | F|F

where NE = not executed

FIGURE 5. DEFINITION OF tree_xor

The following examples show how the tree-coloring algorithm works for Masking MCDC. The
analysis for Unique-Cause MCDC is the same as that for Masking MCDC with the additional
constraint that only one single condition is allowed to change value. Masking MCDC is used in
these examples since the analysis for Unique-Cause MCDC is much simpler and more
straightforward (i.e., did only a single condition change along with the expression results).

The first example will use the expression “A or (B and C)”, presented in figure 6, and the second
example will use the expression “A or else (B and C)”, presented in figure 7. Both examples will
use the condition combinations in (A, B, C) of 2:(FTF), whose evaluated Expression Tree is
presented in figures 6(a) and 7(a), and 5:(TFT), whose evaluated Expression Tree is presented in
figures 6(b) and 7(b). The annotations (or colors) are shown in the trees as subscripts where the
following are the subscript meanings:

T - True
F - False
X - Not-Executed

The Influence Trees are presented in figures 6(c) and 7(c). Recall that the annotations for the
Influence Tree are obtained by tree xoring the corresponding annotations in the Expression
Trees.

B C B. C, B, C
(a) (b) (c)

FIGURE 6. GRAPH COLORING FOR A or (B and C)
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OR-EL SE, OR-ELSE, OR-ELSE,
A.  AND, A.  AND, A AND,
B. C B, C, B. C,
(a) (b) (c)

FIGURE 7. GRAPH COLORING FOR A or else (B and C)

For example, in figure 6 the influence annotation for the OR operator is obtained by (False
tree_xor True = True). Since the OR operator is the decision operator, the influence annotation
must be True if the pair of tests is to demonstrate the independence of any condition. Note that
the decision operator changing value between the two tests is a necessary (by the definition for
MCDC), but not sufficient, condition for a pair of tests to be an independence pair (i.e., not every
pair of tests which change the decision outcome will form an independence pair). The
annotations for the rest of the nodes in the Influence Tree can be obtained in like manner to how
the OR was done.

The Influence Set is then obtained by finding all of those conditions that have a path of True
annotations all the way up the Influence Tree.

Looking at figure 6(c), it can be determined that the Influence Set for these two condition
combinations is (A), even though all three conditions changed value between the two Expression
Trees (figures 6(a) and 6(b)). Conditions B and C are prevented from being members of the
Influence Set by the AND operator remaining False in figures 6(a) and 6(b), and therefore being
False in the Influence Tree (figure 6(c)). The AND operator blocked the effects of B’s and C’s
changes from influencing the decision change.

Looking at figure 7(c), it can be determined that the Influence Set for these two condition
combinations is again just (A), even though all three conditions changed value. Conditions B and
C are prevented from being members of the Influence Set since they (and the AND operator to
which they are conditions) were executed only once. Therefore they and the AND operator are
False in the Influence Tree (figure 7(c)). Recall that for a condition to have influence, it must
toggle between True and False in two executions.

The following three figures demonstrate that the graph-coloring algorithm works with XOR
operators (figure 8), relational operators (figure 9), and coupled conditions (figure 10). They are
presented without detailed explanations as the reasoning and format is the same as that used in
figures 6 and 7. However, unlike figures 6 and 7 where A’s independence is shown, B’s
independence will be shown in figures 8, 9, and 10. Figures 8 and 9 will use the condition
combinations in (A, B, C, D) of 10:(TFTF) presented in figures 8(a) and 9(a); and 13:(TTFT)
presented in figures 8(b) and 9(b). Figure 10 will use the condition combinations in (A, B, C) of
4:(TFF) presented in figure 10(a) and 6:(TTF) presented in figure 10(b).
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FIGURE 9. GRAPH COLORING FOR A and (B = (C or D))

OR. OR, OR,

OR. AND, OR, AND, OR, AND,

ANmDF BF/\CF AI\mDF BT/\CF AImDF BT/\CF
'S Y4 TS VO NG Ve

(a) (b) (©
FIGURE 10. GRAPH COLORING FOR (A and B) or (A and C) or (B and C)

Notice in figure 10 that the test set (4:(TFF) and 6:(TTF)) demonstrates the independence of the
first occurrence of B.



3.2 THE THREE WORKING DEFINITIONS.

Recall that the three forms of MCDC that we will study are Unique-Cause MCDC, Unique-
Cause + Masking MCDC, and Masking MCDC. They are defined in the following subsections.

3.2.1 Unigue-Cause MCDC.

Unique-Cause MCDC will require a unique cause (toggle a single condition and change the
expression result) for all possible (uncoupled) conditions. In the case of strongly coupled
conditions, no coverage set is possible as DO-178B provided no guidance on how to cover these
conditions. Fortunately, as the data in appendix C shows, expressions with strongly coupled
conditions are quite rare in airborne software (72 of 20,256 expressions).

3.2.2 Unigue-Cause + Masking MCDC.

Unique-Cause + Masking MCDC will require a unique cause (toggle a single condition and
change the expression result) for all possible (uncoupled) conditions. In the case of strongly
coupled conditions, masking will be allowed for that condition only (i.e., all other (uncoupled)
conditions will remain fixed). This definition complies with the suggestion made in reference 4.

3.2.3 Masking MCDC.

Masking MCDC, as its name implies, allows masking in all cases. This is an extension beyond
the suggestion made in reference 4 that masking be allowed for strongly coupled conditions only.
This extension to allow masking for all conditions was motivated by the Boolean Difference
Function. As the example given in section 3.1.1 showed, when demonstrating the independence
of A'in ““A or (B and C),” all that was required was that the subexpression “B and C,”” remain
False.

4. EXTENSION OF MCDC FOR RELATIONAL OPERATORS.

Currently, MCDC concerns itself entirely with Boolean operators and operands. This means that
MCDOC is ignoring relational operators and non-Boolean operands. This presents the possibility
that MCDC is ignoring a significant portion of the logic verification domain. The data in tables
4 and 5 suggests that perhaps MCDC should be providing some assurance for the relational
operators between non-Booleans, as it does for the Boolean operators. Unfortunately, MCDC as
defined does not address what needs to be done in order to cover these relational operators (i.e.,
provide some assurance that they are correct). This section proposes some extensions to the
basic MCDC definition to cover the relational operators (applied to non-Booleans).

Recall that appendix C contains all the logic expressions extracted from five examples of
airborne software source code. Table 4 presents a condition profile by class from the expressions
contained in appendix C using the operand terminology from that appendix (e.g., Iv means
integer-object). The data in table 4 shows that approximately 68% of the conditions occurring in
the profiled airborne software are discrete Boolean values. This leaves 32% of the conditions
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consisting of some form of relational operator (the Ada membership operator (in, not in) is
including as a relational operator).

TABLE 4. CONDITION OCCURRENCES BY CLASS

Class of Relational Operators Total | Percentage
Generic Objects (?v) 21 0.074
Access Objects (Av) 284 1.003
Boolean Array Objects (Bav) 11 0.039
Boolean Objects (Bv) 19,229 | 67.875
Character Array Objects (Cav) 12 0.042
Character Objects (Cv) 88 0.311
Enumerated Array Objects (Eav) 3 0.011
Enumeration Objects (Ev) Membership 65 0.229
Enumeration Objects (Ev) 3,212 11.338
Floating Point Objects (Flv) 197 0.695
Fixed Point Objects (Fxv) 971 3.428
Integer Array Objects (lav) 1 0.003
Integer Objects (Iv) Membership 76 0.268
Integer Objects (Iv) 4,083 | 14.412
Record Objects (Rv) 43 0.152
String Array Objects (Sav) 3 0.011
String Objects (Sv) 31 0.109

28,330 100

In table 4, the first column identifies which base Ada type is operated upon by the relational (or
membership) operators (i.e., Integer Objects (Iv) means integer-object relational-operator
integer-object) or the Boolean objects appearing as conditions (i.e., Boolean objects (Bv)). Note
that relational operators between Boolean objects are defined to be Boolean operators by the
MCDC definition, therefore the Boolean objects operated upon by the relational operators are
identified as conditions, not the relational operators (as is the case for non-Boolean objects). The
second column identifies the total number of occurrences of conditions of that class. The third
column identifies the percentage.

Table 5 presents an expression profile by class for each of the condition levels of the expressions
in appendix B. The data in table 5 show that the majority of expressions occurring in airborne
software utilize Boolean discretes as the only conditions (67% for expressions with 1 through 76
conditions, 58% for expressions with 2 through 76 conditions). The data also show that a
significant number of expressions have no Booleans for conditions (29% for expressions with 1
through 76 conditions, 24% for expressions with 2 through 76 conditions).

In table 5, the first column identifies the number of unique conditions which appear in the

expression(s), except for the last two rows, which show two different levels of totals: one for all
the condition levels and one for only the multicondition levels (> 1 condition). The second
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TABLE 5. BOOLEAN EXPRESSION PROFILE

Number of Boolean Relational
Conditions Only Mixed Only Total
1 11,430 5,061 16,491
2 1,369 300 593 2,262
3 403 169 113 685
4 231 63 97 391
5 79 33 19 131
6 34 20 25 79
7 15 21 16 52
8 16 14 15 45
9 10 8 17 35
10 4 4 8
11 3 3
12 2 2 4
13 5 2 5 12
14 2 2 5 9
15 2 5 7
16 6 22 1 29
17 2 1 3
18 3 3
19 1 1
21 1 1
25 1 1
28 1 1
33 1 1
49 1 1
76 1 1
1..76 Total 13,614 667 5,975 20,256
2..76 Total 2,184 667 914 3,765

column shows the number of expressions that consist of only Boolean conditions. The third
column shows the number of expressions that consist of mixed Boolean and relational
conditions. The fourth column shows the number of expressions that consist of relational
conditions only (i.e., no Booleans). The fifth column shows the total number of expressions.

The extensions defined in the following two subsections are to ensure that the correct relational
operator (rop) as well as the correct operands (A, B) are in place in the relational expression (A
rop B). As with MCDC, these extensions are not intended to guarantee the absence of all errors,
just an acceptably high probability of detecting errors if they occur. Note that the rules for
MCDC already cover relational operators between Booleans.

22



4.1 OPERATOR ASSURANCE EXTENSIONS.

To properly demonstrate that the correct relational operator is in place (either in the requirements
or in the implementation) requires two things. The first thing that is required is that the
verification set (analyses/tests), which when applied to the operator, is guaranteed to distinguish
between the correct operator and the erroneous ones. This means that at least one of the
analyses/tests must return a different result between the correct operator and all possible incorrect
ones. Recall that there are three relational states between any two objects (A, B) of the same

type:

. A equals B (equality, A = B),
. A'is greater than B, B is less than A (greater than, A> B), and
. A'is less than B, B is greater than A (less than, A < B).

These three basic states then should form the basis for the definition of the verification set. The
objective is to find the smallest number of these three basic states such that every relational
operator returns a different value for at least one of them. Table 6 shows that all three of these
basic states (shown on the left of the table) are necessary to distinguish the six relational
operators (shown across the top of the table). For any pair of states, at least two of the relational
operators will return the same set of results, therefore more than two states are required. The
need for all three basic states was proven by Howden [2].

TABLE 6. RESPONSE PROFILES FOR Arop B

Basic States | A=B | AZB | A>B | A>B | A<B | A<B
A=B T F F T F T
A>B F T T T F F
A<B F T F F T T

The second thing that is required to properly demonstrate that the correct relational operator is in
place is that the distinguishing analyses/tests be applied in such a way that the results of the
analyses/tests are not masked. In essence, this means that the relational operator analyses/tests
must be applied in such a way that all three demonstrate the relational operator’s independence.
Note that this requirement will require three tests for each relational operator, where
independence (from the Boolean perspective) normally only requires two. However, from the
Boolean expression perspective, that third test does not necessarily tell anything more, since the
same truth vector from one of the earlier tests may result (e.g., when verifying the expression
A = B, only two truth vectors result from the three analyses/tests: (0:F and 1:T)).

4.2 OPERAND ASSURANCE EXTENSIONS.

The next extension to consider for relational operators is providing some assurance that the
expressions that represent the operands (objects (A, B)) are correct. This is especially important
when one of the operands to the relational operator is a constant. Verifying the constant is
equivalent to boundary value analysis of the partition it forms in the operational space.
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To do this, the following relations are needed between the operands in the verification set:

a. Both operands equal to each other (A = B).

b. The left operand equal to the successor of the right operand in the computer number
representation (A = Succ(B)).

C. The left operand equal to the predecessor of the right operand in the computer number
representation (A = Pred(B)).

For example, consider the expressions A = B versus A= C when C > B. The analysis is laid out
in table 7. In the first column, the relations that hold between the values for A and B are
specified (e.g., for the second row A equals B). The second column gives the response for the
(correct) function A = B when given the data from the first column. The third column gives the
response for the (incorrect) function A = C when C = Succ(B). For this case, the incorrect
function is considered to be A = Succ(B). For the case when A = B, this function gives an
incorrect response, as it does when A = Succ(B). These two entries will show up as bold italics
in table 8. The fourth column gives the response for the incorrect function A = C when C >
Succ(B). For this case, the incorrect function is considered to be A = Succ(B) + 8, where the & is
some nonzero value. Notice that this function only gives an incorrect response when A = B.
This entry is the same as the one for the third column, so it will appear in bold italics in table 8 as
a single entry (F). The entries for A = Succ(B) disagree, so the double entry (T/F) is shown in
table 8.

TABLE 7. RESPONSE PROFILES EXAMPLE

A=B | A=C{C= Succ(B)} A =C{C> Succ(B)}
A = Succ(B) A= Succ(B) + 9
A=B T F F
A= Succ(B) F T F
A=PredB)| F F F

TABLE 8. RESPONSE PROFILES FOR AropBVS AropC,C> B

A=C|AzC|A>C|A>C|A<C|A=<C
A=B F T F F T T
A=Suce®B) | T/F | FIm | F | TIF [ FIT | T
A=PredB) | F T F F T T

Tables 8 and 9 show that these relations will detect the incorrect operand C in the
implementation for the specified operand B. The first column of the table identifies the desired
relation between A and B for the corresponding row. The second through seventh columns
represent the incorrect expression in (A,C), identified by the expression in the first row (i.e., at
the top of the column). The entries in the table are the response given by the incorrect expression
when the relation between A and B is used. The bold italicized entries in the table are where an
incorrect response is given (i.e., F(A, B) # F(A,C)), therefore the error is detected.
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TABLE 9. RESPONSE PROFILES FOR AropBVS AropC,C< B

A=C|A#C|[A>C|A>C | A<C]|A=C
A=B r T T T r r

A= Succ(B) | F T T T F F

A=PredB) | T/F | FIT | FIT | T F [ TF

Table 8 shows that these relations will detect the incorrect operand C in the implementation for
the specified operand B, when C > B. The F/T entries are due to the differences between when
C = Succ(B) versus when C > Succ(B).

Table 9 shows that these relations will detect the incorrect operand C in the implementation for
the specified operand B, when C < B. The F/T entries are due to the differences between when
C = Pred(B) versus when C < Pred(B).

Examination of tables 8 and 9 shows that each of the operand relations are necessary to guarantee
the detection of errors in the operands, especially when one is a constant (B in the tables). Table
8 shows that the relation A = B is needed for the incorrect (=, #, =, <) expressions, and the
relation A = Succ(B) is needed for the incorrect (>, <) expressions. Table 9 shows that the
relation A = B is needed for the incorrect (=, #, >, <) expressions, and the relation A = Pred(B) is
needed for the incorrect (=, <) expressions.

4.3 DEFINITION EXTENSION.

This section gives a suggestion for how to incorporate the operator and operand extensions into
the definition for MCDC. First, notice that the operand extensions given in section 4.1 satisfy
the operator extensions given in section 4.2. This is demonstrated in table 10, where the
equivalent relations are shown.

TABLE 10. OPERATOR RELATION EQUIVALENCE TO OPERAND RELATION

Operator Relation Operand Relation
A=B A=B
A>B A = Succ(B)
A<B A= Pred(B)

This suggests that the definition for MCDC given in section 3 could be extended by another
clause, stating that when the independence tests are run for the relational operator condition, that
the appropriate operand relations be used for the verification/test data per table 11.

To demonstrate how this would work, consider the expression (A = B) and (C /= D) and E where
(A, B, C, D) are non-Booleans and (E) is Boolean. The coverage tests from the Boolean
perspective are given in table 12. Notice that the rows are labeled with their condition codes.
The independence tests for an AND operator are to submit all Trues, and then to cycle a single
False through all the conditions.
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TABLE 11. RELATIONAL OPERATOR INDEPENDENCE TEST DATA

Expression True Result False Result
A=B A=B A = Succ(B), A= Pred(B)
AZB A= Succ(B), A= Pred(B) A=B
A>B A = Succ(B) A= B, A= Pred(B)
A>B A= B, A= Succ(B) A= Pred(B)
A<B A = Pred(B) A= B, A= Succ(B)
A<B A= B, A= Pred(B) A = Succ(B)

TABLE 12. INDEPENDENCE TEST SET FOR (A= B) and (C/= D) and E

Test | (A=B) | (C/=D) E
I True True True
6 True True False
5 True False True
3 False True True

Expanding table 12 per table 11, results in table 13, where the required relations have been
supplied between (A, B) and (C, D) in their respective columns. Notice that test 7 has been
expanded into two tests: 7a and 7b. This is because the independence pair for (C /= D) is (tests
5 and 7), and test 7 is the one where the Pred and Succ relations return the required results. Test
3 was expanded to accommodate the relations for (A = B) for similar reasons.

TABLE 13. EXPANDED INDEPENDENCE TEST SET FOR (A= B)and (C/= D)and E

Test (A=B) (C/=D) E
7a A=B C = Suce(D) True
7b A=B C = Pred(D) True
6 A=B C#D False
5 A=B C=D True
3a A = Succ(B) C#D True
3b A= Pred(B) C#D True

Notice that for tests 6 and 3, all that is required of the (C /= D) condition is that it be True. It
does not matter what the difference between C and D is, only that there be one. The Pred and
Succ relations could be used in these tests, but their usage would not satisfy the requirements of
table 11 and would not prevent the expansion of test 7 into 7a and 7b. Similar reasoning applies
to tests 6 and 5 and the (A = B) condition.

Notice that in moving from table 12 to table 13 two more tests have been added to the test set
(one for each relational operator). From the Boolean perspective, these two new tests have not
added anything to the verification. This is because tests 7a and 7b return the same Boolean
results for the function and have identical Boolean condition values. The same applies to tests 3a
and 3b. Whether these extended tests provide value commensurate with their cost is an issue that
was not addressed during this study.
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5. THEORETICAL COMPARISONS.

We will now look at the performance of the different forms of MCDC. This set of comparisons
will consider only the theoretical side of things. It may be the case that, in practice, MCDC will
always perform above these levels. However, it will always be the case that MCDC cannot
perform below these levels. The first comparison concerns the minimum number of tests that the
different forms of MCDC allows. The expectation is that the fewer tests that are required, the
worse the criteria will perform in detecting errors. This will be the concern of the second
comparison performed.

5.1 MINIMUM NUMBER OF TESTS VS EXPRESSION SIZE.

One of the major questions concerning any structural coverage criterion is how many tests must
be run to satisfy coverage? A second related question concerns the benefits accrued for the costs
of those tests. The second question is addressed in section 5.2. To determine a minimum
number of tests, return to the definition for MCDC. MCDC requires a pair of tests for each
condition, known as an independence pair. These two tests need to return a different value (one
True and one False). This could be laid out graphically in an Independence Graph, as in figure
11. In an independence graph, the tests are the nodes of the graph, and the edge that connects
them is labeled for the condition whose independence is shown by those two tests (i.e., condition
A). The nodes are colored differently, indicating that they return different values. Which color
represents True and which False is unimportant for this discussion. The independence graph is
an adaptation of an n-cube representation for a Boolean function [5].

O—A—m

FIGURE 11. INDEPENDENCE GRAPH FOR CONDITION A

Figure 11 can now be extended for an additional condition B in one of two ways. In order to
show B’s independence, two tests are needed to form its independence pair. One of the tests (at
most) can be used from A’s independence pair and couple it with a new test for B. Notice that if
another new test is not introduced, then both A and B are changing values between the same pair
of tests, and therefore those two tests cannot form an independence pair for either condition. The
two possible extensions for B’s independence are shown in figure 12.

[(F—A——B—11 B—B——+—A—1

FIGURE 12. INDEPENDENCE GRAPHS FOR ADDING CONDITION B

The two independence graphs in figure 12 can each be extended in three ways for an additional
condition C. Either an additional dark node can be added, connected to an already existing light
node, or vice-versa. The two existing nodes of the same color cannot be connected for condition
C’s independence, as this would violate the rule for independence. One of the possible
extensions for each of the independence graphs in figure 12 are shown in figure 13. In this case,
C has been extended off of the center node in each of the graphs. The other possibilities would
connect C with one of the outer nodes (and change the “C ” node’s color).
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FIGURE 13. INDEPENDENCE GRAPHS FOR ADDING CONDITION C

What the proceeding has shown is that for up through three conditions, any form of MCDC will
require a minimum of N + 1 tests, where N is the number of conditions. At this point, that will
now change. In the preceding analyses, it was not important to know the states of the conditions
at the nodes (i.e., their values). For the next step in the analysis, it will be important to know this
because the rules for making transitions differ between the different forms of MCDC.

To begin the analysis for four and more conditions, first start with a discussion of graphically
represented functions, starting with the n-cube representation [5]. The vertices of the n-cube
represent the minterms of the function (i.e., the condition combinations), while the edges
represent a transition between two vertices that differ in just one value. The true vertices (those
for which the function returns True) are colored (dot added), while the false verticesare not. The
edges between true vertices are also colored (heavier line). Figure 14 is a two-cube
representation for the Boolean function which has the expression not (A and B). The
representation on the left side is the traditional mathematical representation, while the
representation on the right side has been modified to use condition combinations. You may
recognize that this is an alternate form of a KV-map [5].

0,1) (1,1) 1:(FT) 3:(TT)

(0,0) (1,0) 0:(FF) 2:(TF)
FIGURE 14. TWO-CUBE REPRESENTATION OF not (A and B)

To show the independence of either of the conditions will require that the truth vector 3:F-tt be
one of the members of the independence pair as that is the only condition combination for which
this function returns False. To show the independence of A, change between the condition
combination 3:(TT) to the combination 1:(FT) and have the function return True for the latter
combination.  This is possible as the two-cube representation of this expression shows
(figure 14). To show the independence of B, change between the condition combination 3:(TT)
to the combination 2:(TF) and have the function return True for the latter combination. This is
possible as the two-cube representation of this expression shows (figure 14). For this function,
the change between 3:(TT) to 0:(FF) is not allowed to show independence. This is because both
conditions change value, so neither one can be said to have shown independent effect.
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Now consider a function with three conditions. Figure 15 is a three-cube representation for the
Boolean function with the expression A and (B or C).

(0,1,0) (1,1,0) 2:(ftf) 6:(ttf)

(0,1,1) (1,1,2) 3:(ftt) 7:(ttt)

(1,0,0) 4:(tff)
(0,0,0) 0:(fff)
(0,0,1) (1,0,1) 1:(Fft) 5:(tft)

FIGURE 15. THREE-CUBE REPRESENTATION OF Aand (B or C)

The independence analysis for the expression A and (B or C) is presented in table 14 (tree
analysis left as an exercise for the reader). The first column lists the condition under
consideration, the second column identifies one of the independence pairs for the condition, and
the final column identifies the transition type. The first type of transition is along an edge of the
three-cube. This is the only transition allowed by Unique-Cause MCDC (by definition, only the
condition of interest is allowed to change). The second type of transition is a diagonal (i.e., not
along an edge). These transitions are allowed by Masking MCDC. There are two types of
diagonals, one that travels along a cube face (e.g., 1 to 7), and one that travels internally between
opposite corners of the cube (e.g., 1 to 6). Each of these different types is identified. Notice that
there is at least one edge transition independence pair for each condition, so there is a Unique-
Cause MCDC coverage set for this expression. Notice that there is at least one independence
pair (of any transition type) for each of the conditions, so there is a Masking MCDC coverage set
for this expression. Also notice that there are diagonal transitions for condition A, so there are
more coverage sets for Masking MCDC than there are for Unique-Cause MCDC (remember that
one independence pair is needed for each condition to form a coverage set).

TABLE 14. INDEPENDENCE ANALYSIS FOR Aand (B or C)

Condition Independence Pair Transition Type
A (1,5) Edge
(1,6) Internal Diagonal
(1,7 Face Diagonal
(2,5) Internal Diagonal
(2,6) Edge
(2,7 Face Diagonal
(3,5) Face Diagonal
(3,6) Face Diagonal
(3,7) Edge
B (4,6) Edge
C (4,5) Edge
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Two independence graphs are presented in figure 16. The graph on the left is for a Unique-
Cause MCDC coverage set, while the one on the right is for Masking MCDC. The nodes have
been annotated with the condition codes. Notice that in the Unique-Cause graph, only a single
condition changes between the nodes (as expected). With the Masking graph, the transition from
6 to 1 changes all three conditions. This is allowed because the changes in conditions (B, C) are
masked at the or operator (i.e., the or remained True).

S5:(tft)  4:(tff)  6:(tt) 5i(tft)  4:(tff)  6:(ttf)
1F—o—£}—&—l B——11-
il

1:(Fft) 1:(fft)

FIGURE 16. INDEPENDENCE GRAPHS FOR ADDING CONDITION C

Theorem 1. If a coverage set exists for an expression with N unique conditions with a single
occurrence each, then both Unique-Cause MCDC and Unique-Cause + Masking MCDC require
a minimum of N + 1 tests. See section 7 for a discussion of why a coverage set may not exist for
certain expressions.

To understand why this is so, use a modified form of the independence graph as shown in figures
17 through 20. The modified independence graph annotates the nodes in a different manner than
previously used. In this case, annotate the nodes with an indication of which condition changed
in the transition from the previous/following truth vector. Figure 17 shows the annotated
independence graph for a single condition (A). For this annotation, pick one of the nodes to be a
baseline and annotate all the conditions with a 0 subscript. Then when the transition is made for
that condition which shows its independence, change the annotation to a 1 subscript. Figure 17
is annotated two ways to show that it does not matter which node to start with, nor which color to
start with.

A A,
E—A—0
Al AO

FIGURE 17. ANNOTATED INDEPENDENCE GRAPH FOR A SINGLE CONDITION (A)

Figure 18 shows the annotated independence graph for two conditions (A, B). As with figure 17,
this graph is also annotated two ways to show that it does not matter which node to start with
(outer, inner), nor which way the independence chain was built ((A, B) off of base, (A, B) off of
(B, A)).

AB AB, AB
B—A—{1—5—@
AlBO AOBO AOBl

FIGURE 18. ANNOTATED INDEPENDENCE GRAPH FOR TWO CONDITIONS (A, B)
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Figure 19 shows two annotated independence graphs for three conditions (A, B, C). The two
different styles of graphs show again that it does not matter which node is used first to start with,
nor how the independence chain was built.

ABC, ABC, ABC, ABC, AB
B—A—1+—8—m—c—1 B—A

AB.C,

FIGURE 19. ANNOTATED INDEPENDENCE GRAPHS FOR THREE
CONDITIONS (A, B, C)

Finally, figure 20 shows one annotated independence graph for four conditions (A, B, C, D).
These graphs have shown that starting with each condition annotated with a zero subscript,
sufficient tests are needed to change the subscript from a 0 to a 1. It is also known that this
subscript change will occur only once for each condition (assuming there is an independence pair
for the condition). Given that N annotation changes are needed for N conditions, plus the base
case of all 0 annotations are needed, this requires a minimum of N + 1 tests.

ABCD, ABCD, ABCD, ABCD, ABCD

0—0 10700 171700 1—171°0 1717171

[H—*A B—{+H—€ B

FIGURE 20. INDEPENDENCE GRAPH FOR FOUR CONDITIONS (A, B, C, D)

A way to paraphrase the above is to consider that the smallest test set can be constructed if every
condition past the first one is able to add a single test to the existing set. Since the first condition
required two tests for its independence, and each condition is adding exactly one new test to the
set, this results in N + 1 tests for N conditions.

Theorem 2. If a coverage set exists for an expression with N unique conditions with M total
occurrences, then Unique-Cause + Masking MCDC requires a minimum of M + 1 tests. See
section 7 for a discussion of why a coverage set may not exist for certain expressions.

To understand why this is so, rewrite the expression in terms of M unique conditions and then
follow the argument for N conditions each with a unique occurrence given previously. The fact
that some of these conditions will be strongly coupled (due to being identical) has no effect on
the size of the minimum coverage set. However, coupling does have an effect on whether a
coverage set exists, and whether the theoretical minimum is achievable.

Theorem 3. If a coverage set exists for an expression with N unique conditions with a single

occurrence each, then Masking MCDC requires a minimum of RUTW(2* SQRT(N)) tests, where
RUTW stands for round up to whole. See section 7 for a discussion of why a coverage set may
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not exist for certain expressions. The rounding up is necessary when the quantity 2* SQRT(N) is
not a whole number, since a fractional number of tests is not possible.

To understand why this is so, consider that a minimum number of tests can be achieved if every
node in an independence graph can have an arc to every node in that graph in a different color.
Figure 21 shows two such independence graphs, one with four conditions and four tests, and one
with six conditions and five tests.
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RSN

FIGURE 21. INDEPENDENCE GRAPHS SHOWING MINIMUM NUMBER OF TESTS

The minimum number of tests for the maximum number of conditions can be achieved when the
independence graph consists of an equal number of nodes of each color, with each pair of
different colored nodes supporting the independence of a condition. This is known as a perfect
square, and some examples are shown in figure 22. These independence graphs have been
formatted differently from those used previously. Here the nodes are shown in a matrix, with the
dark nodes forming the columns and the light nodes forming the rows. The condition whose
independence is shown by a pair of dissimilar colored nodes is shown at the intersection of the
two node’s column and row.
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FIGURE 22. INDEPENDENCE GRAPHS SHOWING PERFECT SQUARES

Figure 22 proceeds from two tests (for one condition), to four tests (for four conditions), to six
tests (for nine conditions), and finally to eight tests (for sixteen conditions). In every case, when
another new test for a new condition is needed (from two tests for just A, to three tests for (A,
B)), first extend the dark-colored nodes first, followed by the light-colored nodes. In all cases,
the maximum number of conditions is achieved when the square is filled. For example, consider
the extension from two conditions (A, B) to three conditions (A, B, C) depicted in figure 23. If
another dark node is added to the graph for condition C, four tests would have been used to cover
three conditions (as with the Unique-Cause form of MCDC). By adding a second light node to
the graph, four tests are still used to cover three conditions, but there is a space in the
independence graph to add a fourth condition without having to add another test.
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FIGURE 23. INDEPENDENCE GRAPHS FOR A TWO- TO THREE-
CONDITION EXTENSION

Achieving maximum node cover with minimum tests being a perfect square means that the
number of nodes of one color should equal the square root of the number of conditions. Since an
equal number of the other colored nodes are needed to form a perfect square, this leads to
2*SQRT(N) tests for N conditions when N is expressible as a perfect square. What about the case
when N is not a perfect square? To deal with this case, consider the extension from six to seven
conditions depicted in figure 24.
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FIGURE 24. INDEPENDENCE GRAPHS FOR SIX AND SEVEN CONDITIONS

For six conditions, the above formula leads to 2*SQRT(6) = 4.90 tests. There cannot be 0.90
tests, since tests are discrete things. Now if this number is rounded to 5, the correct number of
tests can be obtained. However, for seven conditions, the formula leads to 2*SQRT(7) = 5.29
tests. In this instance, rounding this to 5 tests gets an incorrect answer, as the graphs in figure 24
show. In this instance, rounding up to the nearest whole number, which is 6, is required.

Theorem 4. If a coverage set exists for an expression with N unique conditions with M total
occurrences, then Masking MCDC requires a minimum of RUTW(2*SQRT(M)) tests. See
section 7 for a discussion of why a coverage set may not exist for certain expressions.

To understand why this is so, rewrite the expression in terms of M unique conditions and then
follow the argument for N conditions each with a unique occurrence given previously. The fact
that some of these conditions will be strongly coupled (due to being identical) has no effect on
the size of the minimum coverage set. However, coupling does have an effect on whether a
coverage set exists, and whether the theoretical minimum is achievable.

Two equations have now been developed that predict the minimum number of tests for each of
the forms of MCDC. Whether there are expressions which can actually realize this number is
investigated later in this report. For now though, it is assumed that there are expressions that can
realize these minimum numbers. Figure 25 plots the performance of these two equations for
expressions consisting of 1 through 76 conditions. Since the number of tests is the closest thing
this study has for costs, examination of the two curves shows that Masking MCDC will be much
cheaper for larger expressions than either of the other forms (especially for 76 conditions, 18
versus 77 tests).
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The reason for the stepping in the Masking MCDC curve in figure 25 is because of the number of
conditions which can be covered by adding a new test to the perfect square. As figure 24 shows,
when a new test was added for seven conditions, up to nine conditions was also covered for that
same number of tests. This means that (seven, eight, and nine) conditions have the same number
of tests (as the curve shows). Notice that the steps get longer with the addition of more
conditions. This is because the size of the square of tests is getting longer the further out in
condition space the test goes.
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FIGURE 25. MINIMUM NUMBER OF TESTS VS NUMBER OF CONDITIONS

5.2 PROBABILITY OF LOGIC ERROR DETECTION.

As mentioned previously, another of the major questions concerning any structural coverage
criterion is what are the benefits accrued for the costs of the tests run to satisfy coverage? Two
approaches can be taken to provide an answer to that question. In the first approach, investigated
here, the minimum probability of detecting logic errors will be discussed. These logic errors
are abstracted to the ability of the MCDC test set to detect if an incorrect Boolean function has
been implemented. The second approach, which this study was unable to fully address, would
determine the mutation sensitivity of the different forms of MCDC applied to the expressions in
appendix C.

The sensitivity of the different forms of MCDC to errors in the implementation of a Boolean
function can be quantified in the following manner. For a Boolean function of N conditions there
are 2" possible combinations of the condition values. Table 15 shows the possible condition
combinations when there are two conditions. Notice that the combinations are identified with the
corresponding condition code numbers.

TABLE 15. POSSIBLE COMBINATIONS FOR TWO CONDITIONS

Combination,

Combination,

Combination,

Combination,

Condition,

False

False

True

True

Condition,

False

True

False

True
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For each of these condition combinations, there is the possibility of two responses (False, True)
since we are talking about Boolean functions. The responses to the condition combinations can
be used to identify the Boolean function (i.e., used as condition codes). For these M
combinations, (M = 2") there are 2" possible responses (in essence, there is a higher order

Boolean function for the M conditions). This means that for N conditions, there are 2" possible
Boolean functions [5]. Table 16 shows the possible functions (response profiles) for two
conditions, and their respective combinations.

Recall that for a function of N operands, there are 2" possible tests (i.e., combinations of the
condition values) which can be run against the function. In order to completely distinguish the

function wanted from all of the other possible functions (22N - 1), all 2" tests need to be run.
When N starts to get large, this becomes impractical (i.e., this becomes multiple-condition
coverage [6]). When less than 2" tests are run, the function cannot be distinguished from what is
wanted from some other number of functions. This number of undistinguished functions can be
described by the number of functions allowed by the combinations that have not been tested.
This is described as follows: given M tests, then 2"- M combinations were not tested. This

leaves 2(2 ) functions that were not distinguished by the tests. Since one of those functions is
the one that is wanted, this means that for a given function of N operands and any M distinct tests

there are 2(2 ) —1 other functions that are indistinguishable, i.e., produce the same outcome,
for the M tests.

TABLE 16. POSSIBLE BOOLEAN FUNCTIONS FOR TWO CONDITIONS

Combination, | Combination, | Combination, | Combination,
Function, False False False False
Function, False False False True
Function, False False True False
Function, False False True True
Function, False True False False
Function, False True False True
Function, False True True False
Function, False True True True
Function, True False False False
Function, True False False True
Function, True False True False
Function,, True False True True
Function,, True True False False
Function, True True False True
Function,, True True True False
Function,, True True True True

For example, if run (Combination,, Combination,) gets the response (False, False), then the data
in table 16 shows that it cannot tell which of (Function,, Function,, Function,, Function,) are
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being tested. If Function,, is wanted, then there are three other functions that the tests have failed
to distinguish between. This means that given any M distinct tests, the probability P, of
detecting an error in an incorrect implementation of a Boolean expression with N conditions is

given by
2"-Mm) .
P(NM) =1- |:2 N L
’ 2
2

It is important to remember that this probability applies to the detection of an incorrect Boolean
function. This mainly applies to the placement of Boolean operators and operands (i.e.,
conditions). If some of the conditions are composed of relational operators between non-
Booleans, this equation does not apply to the discovery of errors in those relational
(sub)expressions. This means that given the expression (X = 0) and (X < 100), this probability
applies to the detection of the Boolean function A and B. In section 4, extensions for the
relational operators were suggested.

If the number of tests M is fixed at N + 1 (N being the number of conditions), the probability of
distinguishing between incorrect functions grows exponentially with N, N > 3. If M is fixed at
RUTW(2*SQRT(N)), the probability grows in a jumpier progression, representing the steps in the
minimum number of tests discussed previously. Figure 26 shows the growth of both of these
curves for 1 through 32 conditions.
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FIGURE 26. MINIMUM PROBABILITY OF LOGIC ERROR DETECTION VS
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Examination of figure 26 shows that the difference between the Unique-Cause approach and the
Masking approach to MCDC is not that great for the detection of incorrect Boolean functions.
This is especially true when the number of conditions is large.

In figure 27, the same analysis is used to compare the two forms of MCDC to Statement and

Decision Coverage. For this analysis, the Statement Coverage will require a minimum of one
test when the Boolean expression occurs in a branchpoint. Hence, one test is able to be used as
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the lower bound for the performance of Statement Coverage. Because M is fixed at 1, the
probability of distinguishing between incorrect functions drops (as opposed to grows)
exponentially and asymptotically approaches 0.50.
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It is also known that Decision Coverage will require a minimum of two tests when the Boolean
expression occurs in a branchpoint. Hence, two tests are able to be used as the lower bound for
the performance of Decision Coverage. Because M is fixed at 2, the probability of distinguishing
between incorrect functions drops (as opposed to grows) exponentially and asymptotically
approaches 0.75.

Examination of figure 27 shows that either form of MCDC performs significantly better than
either Statement Coverage or Decision Coverage. The differences between the two forms of
MCDC pale by comparison to the differences between Decision Coverage and Statement
Coverage.

It is important to note that the performance of MCDC in this model is based only on the number
of tests, not on which tests were run. This means that any testing which applies N + 1 (Boolean)
tests to a Boolean expression will have the performance given in figures 26 and 27. Recall from
appendix B that MCDC is concentrating on visiting each side of a partitioning plane in a
significant way, which is a form of equivalence class partitioning and boundary value analysis.
It is unknown if the MCDC selection rules would perform significantly better on real expressions
with real errors than just randomly chosen tests of the same number. To help resolve this issue
would require either an error analysis of a real development or a mutation analysis, both of which
this study was unable to address.
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6. EMPIRICAL COMPARISONS.

In section 5, comparisons were considered between the different forms of MCDC in an abstract
theoretical sense. That analysis presented what should be the worst case since the assumption
that all Boolean functions could be realized by an expression allowing the minimum number of
tests is known to be false. As the probability of error detection equation showed, the smaller the
number of tests, the lower the probability of error detection. Therefore, the minimum number of
tests always determines the minimum probability of error detection.

In this section, comparisons were performed between the different forms of MCDC using actual
logic expressions from airborne software (appendix C). These comparisons provide data to allow
for a choice between the different forms of MCDC. The comparisons that were performed, are

. The minimum number of tests in a coverage test set versus expression size (section 6.1)
(number of independent conditions). This comparison is used to confirm the theoretical
analysis in section 5.1.

. The probability of error detection (section 6.2) given the minimum coverage test set
versus expression size derived in section 6.1. This comparison is used to confirm the
theoretical analysis in section 5.2.

. The average number of independence pairs (section 6.3) per condition versus expression
size. This comparison is used to determine one aspect of the cost-effectiveness of the
different forms of MCDC. It is assumed that the larger the number of independence pairs
per condition, the easier the attainment of coverage will be.

. The average number of tests in a minimal coverage test set (section 6.4) versus
expression size. This comparison is used to determine one aspect of the cost-
effectiveness of the different forms of MCDC. It is assumed that the smaller the minimal
coverage test set, the easier the attainment of coverage will be. However, this smaller test
set also carries with it a lower probability of error detection.

. The average number of minimal test sets (section 6.5) versus expression size. This
comparison is used to determine one aspect of the cost-effectiveness of the different
forms of MCDC. It is assumed that the larger the number of acceptable test sets, the
easier the attainment of coverage will be.

Because of the analysis methods used in some of these comparisons, they are limited to
expressions with conditions one through six. These analyses are performed in two different
ways: context free and context dependent. The context free analysis assumes that all condition
combinations are possible (i.e., that there is no coupling) while the context dependent analysis
uses only the feasible condition combinations.

In order to perform the first form of analysis, the expressions from appendix C were abstracted

into their pure Boolean form (e.g., the expression (X = 0) and (X < 100) becomes the expression
(A and B) for this analysis). This form of the analysis ignored coupling since coupling will never
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decrease the size of a test set if one exists, only increase it. The use of the smaller-sized (though
infeasible) test set provides a worst-case analysis.

The second form of analysis takes into account the coupling in the original expressions (e.g., the
expression (X = 0) and (X < 100) does not allow for the condition combination 0:FF since it is
not possible for X to be negative (< 0) and greater than 100 (> 100) simultaneously).

6.1 MINIMUM NUMBER OF TESTS VS EXPRESSION SIZE.

The minimum number of tests allowed by the encodings of Boolean expressions will be
computed from the logic expressions in appendix C. These expressions, both in their pure
Boolean form as well as their context-coupled forms, were exhaustively examined (i.e., all
permutations and combinations of condition combinations were computed) to determine the
absolute smallest test set that would satisfy each of the MCDC definitions. This analysis
confirms the theoretical analysis in section 5.1.

6.1.1 Boolean (Context Free) Analysis.

Figure 28 plots the data for Unique-Cause MCDC for one through six conditions. For those
expressions for which at least one test set exists, the number of expressions with that number of
tests as the minimum test set size is shown beside each dot (e.g., for 4 conditions, there are 382
expressions that require 5 tests and 2 expressions that require 7 tests). For those expressions for
which there is no test set possible, the number of expressions is also shown beside each dot (e.g.,
for four conditions, there are seven expressions that have no coverage set). See section 7 for a
discussion of why a coverage set may not exist for certain expressions.
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FIGURE 28. MINIMUM NUMBER OF TESTS VS NUMBER OF CONDITIONS [
UNIQUE-CAUSE (CONTEXT FREE)

Notice that for four conditions, there are two expressions that require more tests than the
theoretical minimum. These two expressions utilized short-circuit forms with coupled
conditions. Normally, Unique-Cause MCDC would not be able to handle these type of
expressions (repeated conditions). However, in this instance the short-circuit forms masked the
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cases when the repeated conditions both change value at the same time (i.e., only one occurrence
of the repeated condition was evaluatable at a time, therefore the identical coupling does not
show up in the independence analysis). Other than these two anomalies, when a coverage set
exists, it requires exactly N + 1 tests (as is indicated by the majority of the data points being on
the N + 1 line).

Figure 29 plots the data for Unique-Cause + Masking MCDC for one through six conditions.
Notice that moving from Unique-Cause to Unique-Cause + Masking allowed for a few more
expressions to have a coverage set. Also notice that this move did not allow for all expressions
to have a coverage set. See section 7 for a discussion of why a coverage set may not exist for
certain expressions. The other thing to notice about this data is that in all cases where Unique-
Cause + Masking allows for a coverage set where Unique-Cause does not, the new coverage sets
are always N + 1 or larger (with the majority being larger).
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Figure 30 plots the data for Masking MCDC for one through six conditions. Notice that moving
from Unique-Cause + Masking to Masking allowed for a few more expressions to have a
coverage set. Also notice that this move still did not allow for all expressions to have a coverage
set. See section 7 for a discussion of why a coverage set may not exist for certain expressions.
Another thing to notice about this data is that in all cases where Masking allows for a coverage
set where Unique-Cause + Masking does not, the new coverage sets are always N + 1 or larger
(with the majority being larger). Finally, the final thing to notice about this data is that the
majority of test sets are still of size N + 1. A few expressions did go below the N + 1 line, but
not very many (85 of 20,030). None of the coverage sets went below the RUTW(2*SQRT(N))
line.
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6.1.2 Coupling (Context Dependent) Analysis.

Figure 31 plots the data for Unique-Cause MCDC for one through six conditions. Comparing
the data in figures 28 (context free) and 31 (context dependent) show that bringing in the context
information into the Unique-Cause MCDC analysis did not change the picture very much. Only
a single expression at the four-condition level needed more tests when context dependency was
brought in. Surprisingly, the context information did not cause any new expressions to not have
a coverage Set.
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Figure 32 plots the data for Unique-Cause + Masking MCDC for one through six conditions.
Comparing the data in figures 29 (context free) and 32 (context dependent) shows that bringing
in the context information changes the picture more for Unique-Cause + Masking than it did for
Unique-Cause (compare figures 28 and 31). In particular, there is one expression each at the
three-, four-, and five-condition levels that do not have coverage sets in the context dependent
analysis that did have coverage sets in the context free analysis. This is because the
independence pairs that would have allowed coverage are not feasible in the implementation.
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Taking a closer look at the four-condition level between figure 29 and figure 32, one expression
which required seven tests in the context free form has no solutions in the context dependent
form. This decreased the number of expressions at (4,7) and increased the expressions at (4,0).
Another expression at the four-condition level required five tests when context free, but now
requires six tests. This decreased the expressions at (4,5) and increased the expressions at (4,6).
This is because the independence pairs that allowed the smaller test set are infeasible.

Comparing figures 31 and 32, once again it can be seen that Unique-Cause + Masking allows for
more expressions to have coverage sets than Unique-Cause does. In addition, each of the
expressions that have coverage under Unique-Cause + Masking has N + 1 or greater tests.

Figure 33 plots the data for Masking MCDC for one through six conditions. Comparing
figure 30 (context free) with figure 33 (context dependent) once again demonstrates that the
context information made some expressions no longer have a coverage set (see three and four
conditions), while increasing the size of others (see six conditions).
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Once again, comparing figures 32 and 33 shows that moving from Unique-Cause + Masking to
Masking allowed for a few more expressions to have a coverage set, though still not all. Notice
that in all cases where Masking allows for a coverage set where Unique-Cause + Masking does
not, the new coverage sets are always N + 1 or larger (with the majority being larger). Finally,
the final thing to notice about this data is that the majority of test sets are still of size N+ 1. A
few expressions did go below the N + 1 line, but not very many (85 of 20,028). None of the
coverage sets went below the RUTW(2* SQRT(N)) line.

6.1.3 Comparisons Across All Forms.

This section presents the data in figures 28 through 33 in tabular form in order to compare and
contrast what is happening with the expression forms. In tables 17 through 22, the following
data is provided. The first column identifies the number of expressions that have the signature of
the number of tests for each form of MCDC. The next three columns (columns two through
four) identify the minimum number of tests needed to satisfy the three forms of MCDC when the
expressions are considered in their pure Boolean context free form. Column two is for Unique-
Cause, column three is for Unique-Cause + Masking, and column four is for Masking. The next
three columns (columns five through seven) identify the minimum number of tests needed to
satisfy the three forms of MCDC when the expressions are considered in context dependent
form. Column five is for Unique-Cause, column six is for Unique-Cause + Masking, and column
seven is for Masking.

Table 17 presents the data for the single condition expressions. As expected, all expressions
require two tests to satisfy any form of MCDC. Recall that at this expression level, all forms of
MCDC are equivalent and require exhaustive testing (both tests) for coverage.

TABLE 17. TEST SET SIZE FOR ONE-CONDITION EXPRESSIONS

Number Context Free Context Dependent
of Unique Unique Unique Unique
Expressions Cause Masking Masking Cause Masking Masking
16,491 2 2 2 2 2 2

Table 18 presents the data for the two-condition expressions. Here there are some definite
differences from the single-condition expressions. First off, notice that there are five expressions
for which there are no coverage sets under any of the interpretations of MCDC. Analysis for
some of these expressions is provided in section 7.1. There are also two expressions for which
there are no coverage solutions for Unique-Cause MCDC, but for which there are solutions for
the other interpretations. These are expressions which have (identically) coupled (i.e., repeated)
conditions. It is interesting to note that for these expressions, exhaustive testing was needed to
achieve coverage. Finally, the vast majority of expressions require three tests for coverage, no
matter what the interpretation for MCDC is. As the analysis in sections 6.3 and 6.5 shows, some
of these expressions have larger numbers of independence pairs and coverage sets under the
Masking interpretation than under the Unique-Cause interpretation.
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TABLE 18. TEST SET SIZE FOR TWO-CONDITION EXPRESSIONS

Number Context Free Context Dependent
of Unique Unique Unique Unique
Expressions Cause Masking Masking Cause Masking Masking
5 0 0 0 0 0 0
2 0 4 4 0 4 4
2,255 3 3 3 3 3 3

Table 19 presents the data for the three-condition expressions. Here there are some definite
differences from the single-condition expressions. As with the two-condition analysis, there are
expressions for which there is no coverage set under any interpretation of MCDC. There are also
expressions that are only MCDC testable under the Masking interpretation. Finally, as was
pointed out earlier in the discussion for figure 32, there is one expression which has MCDC
coverage sets under the context free analysis, but does not when the context dependent
information is factored into the analysis. Again, as was the case previously, the vast majority of
the expressions require N + 1 tests to achieve coverage under any interpretation of MCDC.

TABLE 19. TEST SET SIZE FOR THREE-CONDITION EXPRESSIONS

Number Context Free Context Dependent
of Unique Unique Unique Unique
Expressions Cause Masking Masking Cause Masking Masking

4 0 0 0 0 0 0
8 0 0 4 0 0 4
1 0 4 4 0 4 4
1 0 5 5 0 5 5
1 0 6 4 0 0 0
8 0 6 4 0 6 4
9 0 6 6 0 6 6

653 4 4 4 4 4 4

Table 20 presents the data for the four-condition expressions. Unlike what has been seen
previously, there is a context-free masking coverage set for all of these expressions. As has been
seen previously, there are expressions that have coverage sets under the context-free analysis but
have none under the context-dependent analysis. At this level we also see that there are
expressions for which there is a smaller test set under the context-free analysis than there is under
the context-dependent analysis. This occurred for the Unique-Cause and the Unique-Cause +
Masking interpretations for MCDC. Finally, there are expressions that require more than N + 1
tests for coverage under both of the unique interpretations. Again, as was the case previously,
the vast majority of the expressions require N + 1 tests to achieve coverage under any
interpretation of MCDC.

Table 21 presents the data for the five-condition expressions. As with the four-condition

expressions, there is a context-free Masking coverage set for all of these expressions. There is
also a context-dependent Masking coverage set for all expressions. Again, as was the case
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previously, the vast majority of the expressions require N + 1 tests to achieve coverage under any

interpretation of MCDC.

TABLE 20. TEST SET SIZE FOR FOUR-CONDITION EXPRESSIONS

Number Context Free Context Dependent
of Unique Unique Unique Unique
Expressions Cause Masking Masking Cause Masking Masking
1 0 0 5 0 0 5
4 0 6 5 0 6 5
1 0 7 5 0 0 0
1 0 10 10 0 10 10
45 5 5 4 5 5 4
1 5 5 4 6 6 4
336 5 5 5 5 5 5
2 7 7 5 7 7 5
TABLE 21. TEST SET SIZE FOR FIVE-CONDITION EXPRESSIONS
Number Context Free Context Dependent
of Unique Unique Unique Unique
Expressions Cause Masking Masking Cause Masking Masking
1 0 0 6 0 0 6
1 0 6 6 0 6 6
1 0 7 6 0 0 6
5 0 7 6 0 7 6
1 0 8 8 0 8 8
2 0 9 7 0 9 7
9 6 6 5 6 6 5
111 6 6 6 6 6 6

Table 22 presents the data for the six-condition expressions. Again, as was the case previously,
the vast majority of the expressions require N + 1 tests to achieve coverage under any
interpretation of MCDC.

TABLE 22. TEST SET SIZE FOR SIX-CONDITION EXPRESSIONS

Number Context Free Context Dependent
of Unique Unique Unique Unique
Expressions Cause Masking Masking Cause Masking Masking
1 0 9 6 0 9 6
8 7 5 7 7 5
6 7 7 5 7 7 6
15 7 7 6 7 7 6
49 7 7 7 7 7 7
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6.2 PROBABILITY OF ERROR DETECTION.

This section computes the probability of error detection given the minimum number of tests
determined in section 6.1, and the probability of error detection formula given in section 5.2.

6.2.1 Boolean (Context Free) Analysis.

Figure 34 plots the probability of error detection results from the size of test sets data in figure 28
for Unique-Cause MCDC for one through six conditions. For those expressions for which at
least one test set exists, the number of expressions with that probability is shown below and to
the left of each dot. For those expressions for which there is no test set possible, no data is
plotted. As can be expected, since the majority of expressions required N + 1 tests, the majority
of the expressions fall on the minimum probability of error detection line for Unique-Cause
MCDC.
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FIGURE 34. PROBABILITY OF ERROR DETECTION LUNIQUE-CAUSE
(CONTEXT FREE)

Figure 35 plots the probability of error detection results from the size of test sets data in figure 29
for Unique-Cause + Masking MCDC for one through six conditions. As can be expected, since
the majority of expressions required N + 1 tests, the majority of the expressions fall on the
minimum probability of error detection line for Unique-Cause MCDC.

Figure 36 plots the probability of error detection results from the size of test sets data in figure 30
for Masking MCDC for one through six conditions. As can be expected, since the majority of
expressions required N + 1 tests, the majority of the expressions fall on the minimum probability
of error detection line for Unique-Cause MCDC. None of the expressions fall below the
Masking MCDC line.
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6.2.2 Coupling (Context Dependent) Analysis.

Figure 37 plots the probability of error detection results from the size of test sets data in figure 31
for Unique-Cause MCDC for one through six conditions. As can be expected, since the majority
of expressions required N + 1 tests, the majority of the expressions fall on the minimum
probability of error detection line for Unique-Cause MCDC.
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FIGURE 37. PROBABILITY OF ERROR DETECTION LUNIQUE-CAUSE
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Figure 38 plots the probability of error detection results from the size of test sets data in figure 32
for Unique-Cause + Masking MCDC for one through six conditions. As can be expected, since
the majority of expressions required N + 1 tests, the majority of the expressions fall on the

minimum probability of error detection line for Unique-Cause MCDC.
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FIGURE 38. PROBABILITY OF ERROR DETECTION LUNIQUE-CAUSE + MASKING
(CONTEXT DEPENDENT)

Figure 39 plots the probability of error detection results from the size of test sets data in figure 33
for Masking MCDC for one through six conditions. As can be expected, since the majority of
expressions required N + 1 tests, the majority of the expressions fall on the minimum probability
of error detection line for Unique-Cause MCDC. None of the expressions fall below the
Masking MCDC line.
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6.3 NUMBER OF INDEPENDENCE PAIRS.

As was shown in section 5.1, one of the things that can happen when moving from Unique-Cause
MCDC to Masking MCDC is that the number of independence pairs grows. More independence
pairs mean a greater probability of achieving coverage for each condition. Tables 23 through 25
present the empirical data for the average number of independence pairs allowed by each
definition of MCDC for the expressions contained in appendix C with one through six
conditions.

Table 23 provides the averages over all of the conditions, including those for which there are no
solutions. This analysis disfavors Unique-Cause over the others since fewer conditions are
solvable for this form of MCDC, and those conditions contributed to bringing the average down.
However, the data show the trend that is expected: that as it moves from Unique-Cause to
Masking, the number of independence pairs for each condition will tend to rise. This rise starts
to take off from four conditions and up.

TABLE 23. AVERAGE NUMBER OF INDEPENDENCE PAIRS PER CONDITION [_1
ALL CONDITIONS

Number Context Free Context Dependent
of Unique Unique Unique Unique
Conditions Cause Masking Masking Cause Masking Masking

1 1.0 1.0 1.0 1.0 1.0 1.0

2 1.0507 1.0532 1.0543 1.0507 1.0532 1.0543
3 1.1656 1.2102 1.7581 1.1490 1.1921 1.6874
4 1.5139 1.5247 3.4798 1.4507 1.46081 3.1075
5 1.9277 2.0147 9.2434 1.8245 1.9100 8.2257
6 4.2521 4.2689 35.571 3.2227 3.2395 24.655
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Table 24 provides the averages over all of the conditions for which there are solutions. This
analysis favors Unique-Cause over the others since fewer conditions are solvable for this form of
MCDC, and those missing conditions contributed to keeping the average up. Based on this
analysis, one would expect that Unique-Cause MCDC would be the better criterion to use over
Unique-Cause + Masking MCDC since it allows for more independence pairs per condition.
Notice that even though Unique-Cause MCDC is favored by this analysis, it still did worse than
Masking MCDC.

TABLE 24. AVERAGE NUMBER OF INDEPENDENCE PAIRS PER CONDITION [_1
ALL SOLVABLE CONDITIONS

Number Context Free Context Dependent
of Unique Unique Unique Unique
Conditions Cause Masking Masking Cause Masking Masking

1 1.0 1.0 1.0 1.0 1.0 1.0

2 1.0549 1.0548 1.0554 1.0549 1.0548 1.0554
3 1.2273 1.2217 1.7614 1.2098 1.2041 1.6914
4 1.5323 1.5285 3.4798 1.4683 1.4654 3.1094
5 2.0327 2.0267 9.2434 1.9238 1.9242 8.2257
6 4.2881 4.2689 35.571 3.2500 3.2395 24.655

Table 25 provides the averages over all of the conditions that have solutions under all the MCDC
forms and context sensitivities. This analysis reduces Unique-Cause and Unique-Cause +
Masking into the same criterion. This analysis again shows that Masking MCDC allows more
independence pairs for the conditions in an expression.

TABLE 25. AVERAGE NUMBER OF INDEPENDENCE PAIRS PER

CONDITION LCOMMON SOLVABLE CONDITIONS

Number Context Free Context Dependent
of Unique Unique Unique Unique
Conditions Cause Masking Masking Cause Masking Masking

1 1.0 1.0 1.0 1.0 1.0 1.0

2 1.0550 1.0550 1.0550 1.0550 1.0550 1.0550
3 1.2149 1.2149 1.7448 1.2001 1.2001 1.6810
4 1.5286 1.5286 3.5039 1.4701 1.4701 3.1377
5 2.0017 2.0017 9.4450 1.9167 1.9167 8.5233
6 4.2650 4.2650 35.641 3.2179 3.2179 24.538

All of the analyses performed in this section tend to favor Masking MCDC as the form easiest to

satisfy by virtue of providing more independence pairs for each condition.

6.4 SIZE OF MINIMAL TEST SETS.

As was shown in section 5.1, one of the things that can happen as it moves from Unique-Cause
MCDC to Masking MCDC is that the size of the coverage test sets shrinks. Fewer required
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tests means a greater probability of achieving coverage for each expression. As was seen in
section 5.2, fewer required tests also means a decreased probability of detecting errors. Tables
26 through 28 present the empirical data for the average number of tests in a coverage test set
allowed by each definition of MCDC for the expressions contained in appendix C with one
through six conditions.

Table 26 provides the averages over all of the expressions, including those for which there are no
solutions. This analysis disfavors Unique-Cause over the others since fewer expressions are
solvable for this form of MCDC and those expressions contributed to bringing the average down.

TABLE 26. AVERAGE COVERAGE TEST SET SIZE LALL EXPRESSIONS

Number Context Free Context Dependent |
of Unique Unique Unique Unique
Conditions Cause Masking Masking Cause Masking Masking

1 2.0 2.0 2.0 2.0 2.0 2.0

2 2.9907 2.9943 2.9943 2.9907 2.9943 2.9943

3 3.8131 3.9839 4.0044 3.8131 3.9752 3.9985

4 4.9207 5.0256 4.8951 4.9233 5.0102 4.8824

5 5.4962 6.0611 5.9618 5.4962 6.0076 5.9618

6 6.9114 7.0253 6.4430 6.9114 7.0253 6.5190

Based on this analysis, one would expect that Unique-Cause + Masking MCDC would be the
better criterion to use for error detection since it requires more tests per expression. Which form
to choose for ease of coverage is not clear from this analysis since Masking MCDC is more
closely following the Unique-Cause curve of figure 26 than it is the Masking curve.

Table 27 provides the averages over all of the expressions for which there are solutions. This
analysis favors Unique-Cause over the others since fewer expressions are solvable for this form
of MCDC and those missing conditions contributed to keeping the average down with respect to
Unique-Cause + Masking and up with respect to Masking. Based on this analysis, one would
expect that Unique-Cause + Masking MCDC would be the better criterion to use for error
detection since it requires more tests per expression. Which form to choose for ease of coverage
is not clear from this analysis since Masking MCDC is very close to Unique-Cause.

TABLE 27. AVERAGE COVERAGE TEST SET SIZE LALL SOLVABLE EXPRESSIONS

Number Context Free Context Dependent
of Unique Unique Unique Unique
Conditions Cause Masking Masking Cause Masking Masking

1 2.0 2.0 2.0 2.0 2.0 2.0

2 3.0 3.0009 3.0009 3.0 3.0009 3.0009
3 4.0 4.0550 4.0279 4.0 4.0521 4.0279
4 5.0104 5.0385 4.8951 5.0130 5.0360 4.8949
5 6.0 6.1077 5.9618 6.0 6.1008 5.9618
6 7.0 7.0253 6.4430 7.0 7.0253 6.5190
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Table 28 provides the averages over all of the expressions that have solutions under all the
MCDC forms and context sensitivities. This analysis reduces Unique-Cause and Unique-Cause
+ Masking into the same criterion. This analysis again shows that the Unique-Cause and
Masking forms of MCDC require essentially the same number of tests per expression.

TABLE 28. AVERAGE COVERAGE TEST SET SIZE LCOMMON

SOLVABLE EXPRESSIONS

Number Context Free Context Dependent

of Unique Unique Unique Unique

Conditions Cause Masking Masking Cause Masking Masking
1 2.0 2.0 2.0 2.0 2.0 2.0
2 3.0 3.0 3.0 3.0 3.0 3.0
3 4.0 4.0 4.0 4.0 4.0 4.0
4 5.0104 5.0104 4.8802 5.0130 5.0130 4.8802
5 6.0 6.0 5.9250 6.0 6.0 5.9250
6 7.0 7.0 6.4487 7.0 7.0 6.5256

All of the analyses performed in this section tend not to favor any MCDC form as easiest to
satisfy by virtue of providing smaller coverage test sets for each condition. This also means that
none are favored from the probability of error detection viewpoint either.

6.5 NUMBER OF MINIMAL TEST SETS.

As was shown earlier in section 5.1, one of the things that can happen as it moves from Unique-
Cause MCDC to Masking MCDC is that the number of coverage test sets grows. More allowed
test sets means a greater probability of achieving coverage for each expression. Tables 29
through 31 present the empirical data for the average number of minimal coverage test sets
allowed by each definition of MCDC for the expressions contained in appendix C with one
through six conditions.

Table 29 provides the averages over all of the expressions, including those for which there are no
solutions. Based on this analysis, one would expect that Masking MCDC would be the better
criterion to use since it allows more coverage test sets per expression.

TABLE 29. AVERAGE NUMBER OF COVERAGE TEST SETS LALL EXPRESSIONS

Number Context Free Context Dependent
of Unique Unique Unique Unique
Conditions Cause Masking Masking Cause Masking Masking

1 1.0 1.0 1.0 1.0 1.0 1.0

2 1.1614 1.1622 1.1622 1.1614 1.1622 1.1622
3 1.3489 1.4175 1.7723 1.3372 1.3912 1.7168
4 2.2174 2.2711 5.1407 2.1637 2.1790 4.6777
5 3.8550 4.3206 32.466 3.7634 4.0534 30.069
6 15.722 15.747 1330.4 9.9747 10.0 790.04
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Table 30 provides the averages over all of the expressions for which there are solutions. This
analysis disfavors Unique-Cause over the others since fewer expressions are solvable for this
form of MCDC and those missing conditions contributed to keeping the average down. Based
on this analysis, one would expect that Masking MCDC would be the better form to use since it
allows more coverage test sets per expression.

TABLE 30. AVERAGE NUMBER OF COVERAGE TEST SETS LALL
SOLVABLE EXPRESSIONS

Number Context Free Context Dependent
of Unique Unique Unique Unique
Conditions Cause Masking Masking Cause Masking Masking

1 1.0 1.0 1.0 1.0 1.0 1.0

2 1.1650 1.1648 1.1648 1.1650 1.1648 1.1648
3 1.4150 1.4428 1.7827 1.4028 1.4182 1.7294
4 2.2578 2.2769 5.1407 2.2031 2.1902 4.6897
5 4.2083 4.3583 32.466 4.1083 4.1163 30.069
6 15.923 15.747 1330.4 10.103 10.000 790.04

Table 31 provides the averages over all of the expressions that have solutions under all the
MCDC forms and context sensitivities. This analysis reduces Unique-Cause and Unique-Cause
+ Masking into the same criterion. This analysis again shows that Masking MCDC would be the
better form to use since it allows more coverage test sets per expression.

TABLE 31. AVERAGE NUMBER OF COVERAGE TEST SETS LCOMMON
SOLVABLE EXPRESSIONS

Context Free Context Dependent

Number of Unique Unique Unique Unique

Conditions Cause Masking Masking Cause Masking Masking
1 1.0 1.0 1.0 1.0 1.0 1.0
2 1.1650 1.1650 1.1650 1.1650 1.1650 1.1650
3 1.4150 1.4150 1.7335 1.4028 1.4028 1.6907
4 2.2578 2.2578 5.1458 2.2031 2.2031 4.7240
5 4.2083 4.2083 33.900 4.1083 4.1083 31.558
6 15.923 15.923 1342.2 10.103 10.103 794.83

7. SOLVABLE EXPRESSIONS.

As was pointed out in reference 4, not all expressions have an MCDC coverage set. Coupling
between conditions in an expression is the mechanism by which this occurs. There are two
forms of coupling that need to be addressed:

1. Repeated conditions (i.e., strong coupling, Boolean coupling)
2. Context coupling
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The Boolean coupling mechanism is discussed in section 7.1, while the context coupling
mechanism is discussed in section 7.2. Section 7.3 looks at the solvable expression problem
from a different perspective. Nonsingular Boolean expressions (non-SBESs) are briefly addressed
and how masking helps with the solvability of expressions for these functions.

7.1 BOOLEAN COUPLING.

Those expressions with repeated coupled conditions are sometimes structured such that one or
more of the coupled conditions cannot be masked when one of the other condition instances is
being toggled to demonstrate its independence. This can be demonstrated with the expression (A
and B) or (A and not B). Figure 40 is a two-cube representation (see section 5.1) of the function
this expression represents. The two-cube on the left is the traditional mathematical
representation, while the two-cube on the right has been annotated with condition codes.

0,1) (1,1) 1:(FT) 3:(TT)

(0,0) (1,0) 0:(FF) 2:(TF)
FIGURE 40. TWO-CUBE REPRESENTATION OF (A and B) or (A and not B)

The expression (A and B) or (A and not B) is in conjunctive normal form. This means that each
of the subexpressions ((A and B), (A and not B)) represent minterms, and therefore are
represented by vertices of the two-cube in figure 40. The minterm (A and B) corresponds to the
(1,2)/3:(TT) vertex, while the minterm (A and not B) corresponds to the (1,0)/2:(TF) vertex.

In order to show the independence of the first occurrence of A, a transition from (1,1) to (0,1)
must be done with a change in the function between false and true (expression tree analysis left
as an exercise for the reader). This is possible as the two-cube in figure 40 shows. In order to
show the independence of the first occurrence of B, a transition from (1,1) to (1,0) must be done
with a change in the function between false and true. This is not possible as the two-cube in
figure 40 shows. This expression cannot be MCDC tested under any of the definitions. Note
that this function can be simplified to the expression A, in which case, it is now MCDC testable
under all of the definitions.

In the above example, B was not a significant variable in the function (i.e., the function did not
depend on B, or the function was not a function of B). In the next example, B is significant to the
function (i.e., the function is a function of B). Figure 41 is a two-cube representation of the
function that the expression (not A and not B) or (not A and B) or (A and not B) represents. This
expression is again in conjunctive normal form.

With this function, it is possible to show the independence of the second occurrence of A

(transition from (0,1) to (1,1)) and the third occurrence of B (transition from (1,0) to (1,1)). The
independence of the other conditions cannot be shown. Note that this expression can be
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simplified to either not A or not B, or not (A and B), both of which are MCDC testable under all
of the definitions.

0,1) (1,1) 1:(FT) 3:(TT)

(0,0) (1,0) 0:(FF) 2:(TF)

FIGURE 41. TWO-CUBE REPRESENTATION OF (not A and not B) or
(not A and B) or (A and not B)

A function with three different expressions for it will be considered. Figure 42 is a three-cube
representation for the function with the three expressions.

Aand (B or C);
(Aand B) or (A and C); and
(Aand not B and C) or (A and B and not C) or (A and B and C).

(1,1,0) 6:(ttf)
(0,1,0) 2:(ftf)

01,1 (1.11) 3:(ftt) 7:(ttt)

4:(tff)

(0,0,0) (1,00 0:(Fff)

(0,0,1) (1,0.2) 1:(fft) 5: (tft)

FIGURE 42. THREE-CUBE REPRESENTATION OF Aand (B or C)

The independence analysis for the expression A and (B or C) is presented in table 32. The first
column lists the condition under consideration, the second column identifies one of the
independence pairs for the condition, and the final column identifies the transition type (see
section 5.1).

Notice that there is at least one edge transition independence pair for each condition, so there is
both a Unique-Cause MCDC and Unique-Cause + Masking MCDC coverage set for this
expression. Notice that there is at least one independence pair (of any transition type) for each of
the conditions, so there is a Masking MCDC coverage set for this expression. Also notice that
there are diagonal transitions for condition A, so there are more coverage sets for Masking
MCDC than there are for Unique-Cause/Unique-Cause + Masking MCDC (remember that one
independence pair is needed for each condition to form a coverage set).
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TABLE 32. INDEPENDENCE ANALYSIS FOR Aand (B or C)

Condition | Independence Pair | Transition Type
A (1, 5) Edge
(1, 6) Internal Diagonal
(1,7 Face Diagonal
(2,5) Internal Diagonal
(2, 6) Edge
(2, 7) Face Diagonal
(3,5) Face Diagonal
(3,6) Face Diagonal
(3,7) Edge
B (4, 6) Edge
C (4, 5) Edge

The independence analysis for the expression (A and B) or (A and C) is presented in table 33. In
this table, the independence pairs are separated by the subexpression they are a part of (since A
has multiple occurrences and each must demonstrate its independence). Because of the strongly
coupled condition (A appearing twice) present in this expression, there is no Unique-Cause
MCDC test set. Notice that there is at least one edge transition independence pair for each
condition, so there is a Unique-Cause + Masking MCDC coverage set for this expression. Notice
that there is at least one independence pair (of any transition type) for each of the conditions, so
there is a Masking MCDC coverage set for this expression.

TABLE 33. INDEPENDENCE ANALYSIS FOR (A and B) or (A and C)

Condition | Independence Pair | Transition Type
(Aand B)
A (1" occurrence) | (2, 6) Edge
(3,6) Face Diagonal
B (4, 6) Edge
(Aand C)
A (2" occurrence) | (1, 5) Edge
(3,5) Face Diagonal
C (4,5) Edge

The independence analysis for the expression (A and not B and C) or (A and B and not C) or (A
and B and C) is presented in table 34. Notice that there are no independence pairs (of any
transition type) for some of the conditions. This means that there is no MCDC coverage set for
any of the types of MCDC of this study.

What the examples show is that when there is no transition from a true vertex to a false vertex
allowed by the MCDC definition for a condition, there is no (complete) MCDC coverage set.
This is as expected since MCDC requires an expression-level transition between true to false as a
result of a condition-level transition between true to false in such a way that the transition
condition is the only condition to affect the expression transition.
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These examples also show that an expression can have coverage sets for one form of MCDC that
differ from those for another, in particular between Masking MCDC and one of the Unique-
Cause variants. This is because Masking MCDC allows diagonal transitions in an n-cube
representation of the expression. They have also shown that certain expressions will have no
(complete) coverage set for any form of MCDC. This is because certain expressions allow
neither edge nor diagonal transitions for certain conditions.

TABLE 34. INDEPENDENCE ANALYSIS FOR (A and not B and C) or
(Aand B and not C) or (Aand B and C)

Condition | Independence Pair | Transition Type
(A and not B and C)
A (1" occurrence) | (1,5) Edge
B (1" occurrence)
C (1" occurrence)B | (4, 5) Edge
(A and B and not C)
A (2" occurrence) | (2, 6) Edge
B (2" occurrence) | (4, 6) Edge
C (2" occurrence)
(Aand B and C)
A (3“ occurrence) | (3,7) Edge

B (3" occurrence)
C (3“ occurrence)

It is this property of not allowing transitions that can be used to characterize which functions and
expressions have (complete) MCDC coverage sets under different definitions for independence.
Unfortunately, this study was not able to pursue this analysis very far. A small analysis was
pursued and is documented in section 7.3.

7.2 CONTEXT COUPLING.

As was pointed out in section 6.1.2 of this report, the context coupling of Boolean expressions
incorporating relational operators on non-Booleans can also cause expressions to not have an
MCDC coverage set. This section will examine, in detail, the following line replaceable unit
(LRU) expression from appendix C in order to identify the circumstances under which the
infeasibility occurs. The expression is

(Bvand (Fxv > Fxv2 - url)) or (not Bv and (Fxv > Fxv2))

The analysis will start by looking at the context-free version of this expression. Table 35 is the
independence pairs analysis for the expression (A and B) or (not A and C). In this table, the
independence pairs are separated by the subexpression they are a part of (since A has multiple
occurrences and each must demonstrate its independence). Because of the strongly coupled
condition (A appearing twice) present in this expression, there is no Unique-Cause MCDC test
set. Notice that there is at least one edge transition independence pair for each condition, so there
is a Unique-Cause + Masking MCDC coverage set for this expression, and there is at least one
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independence pair (of any transition type) for each of the conditions, so there is a Masking
MCDC coverage set for this expression.

TABLE 35. INDEPENDENCE ANALYSIS FOR (A and B) or (not A and C)

Condition | Independence Pair | Transition Type
(Aand B)
A (1" occurrence) | (2, 6) Edge
2,7) Face Diagonal
B (4, 6) Edge
4,7 Face Diagonal
(5, 6) Face Diagonal
(5,7) Edge
(not A and C)
A (2" occurrence) | (1, 5) Edge
(1,3) Edge
C (0,1) Edge
(0,3) Face Diagonal
(1,2 Face Diagonal
(2,3) Edge

The condition B in our context-free analysis corresponds to the subexpression (Fxv > Fxv2 - url),
and the condition C corresponds to the subexpression (Fxv > Fxv2). These two conditions are
weakly coupled. If (Fxv > Fxv2 - url) is false (i.e., Fxv ? Fxv2 - url), then (Fxv > Fxv2) cannot
be true. This is because a number (Fxv) cannot be both less than another number (Fxv2) with a
nonnegative decrement (url) and greater than the same number (Fxv2) at the same time. This
means that condition combinations (1) and (5) are infeasible. If these are removed from table 35,
what is left is the independence table for (Bv and (Fxv > Fxv2 - url)) or (not Bv and (Fxv >
Fxv2)), presented in table 36.

TABLE 36. INDEPENDENCE ANALYSIS FOR (Bv and (Fxv > Fxv2 - url)) or
(not Bv and (Fxv > Fxv2))

Condition | Independence Pair | Transition Type
(A and B)
Bv (A) (1" occurrence) | (2, 6) Edge
2,7 Face Diagonal
Fxv > Fxv2 —url (B) (4, 6) Edge
4,7 Face Diagonal
(not Aand C)
Bv (A) (2" occurrence)
Fxv > Fxv2 (C) 0, 3) Face Diagonal
(2,3) Edge

Examination of table 36 shows that the second occurrence of A (Bv1l) has no independence pairs
in the context-dependent analysis. This is because the infeasible condition combinations were
essential to showing that condition’s independence since condition combination (1) was a
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member of both independence pairs. Comparing tables 35 and 36 shows that the second and
fourth conditions also lost independence pairs, but not all of them.

7.3 MASKING AND NONSINGULAR BOOLEAN EXPRESSIONS (NON-SBE).

As was pointed out in section 2.4, some expressions do not have a Unique-Cause MCDC test set
by virtue of the fact that they cannot be represented by an SBE. Section 5.1 pointed out that
certain Boolean expressions can have different coverage sets for the different forms of MCDC.
Section 6 showed that certain expressions without a Unique-Cause coverage test set could have
test sets under the masking forms. Section 7.1 showed that certain Boolean functions could be
represented by multiple Boolean expressions, some of which were solvable under one form of
MCDC while others were not. This section briefly visits the issue of whether or not a masking
coverage set exists for all non-SBEs.

Recall that the data in table 3 indicates that the DO-178B definition for MCDC has a very limited
range of applicability. As part of this study, a brief but incomplete investigation was conducted
into the question of whether one of the masking forms of MCDC would be applicable to all non-
SBEs.

For the three-condition case, there were 104 non-SBEs. For all of these Boolean functions, a
Boolean expression exists which can be solved for both Unique-Cause + Masking MCDC and
Masking MCDC.

For the four-condition case, there were 62,440 non-SBEs. For the 25,520 functions that were
able to be analyzed within the bounds of this study, a Boolean expression was found which could
be solved for both Unique-Cause + Masking MCDC and Masking MCDC.

It is not known if there are Boolean functions for which only Masking MCDC coverage sets exist
for all solvable expressions. It is also not known if there are Boolean functions for which no
MCDC solvable expression exists. This analysis would need to be extended within another
study.

Examination of the data contained in appendix C gives a different story than the data in table 3.
Of the 20,256 expressions extracted from the five systems, only 72 are non-SBEs. From the
empirical point of view, the inapplicability of the DO-178B MCDC definition to non-SBEs is
presently not an item of great concern.

8. MUTATION/FAULT INJECTION INVESTIGATION.

Section 6.2 conducted an empirical comparison of the probability of error detection given MCDC
test sets for the expressions in appendix C. This analysis used the probability of error detection
model developed in section 5.2. An alternative approach would be to determine the probability
of error detection given faulty code and the MCDC test sets for that code. Unfortunately,
examples of faulty airborne software with documented faults were not available for this study, so
an alternative had to be found. That alternative is to inject faults into software and see how the
test sets perform. This alternative, known alternatively as software mutation originally or more
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recently known as software fault injection, is one that has been used within the software testing
research community to evaluate the effectiveness of new testing methods and coverage criteria.

This section uses mutation/fault injection to perform comparisons between the different forms of
MCDC using generated logic expressions and fault injections. The details of the study
methodology, along with some problems that were discovered with mutation theory itself, are
documented in appendix D. These comparisons are intended to provide data to allow for a
choice between the different forms of MCDC. Note that the methodology used for this study did
not generate expressions with coupled conditions, so Unique-Cause and Unique-Cause +
Masking MCDC are identical. The comparisons performed are

. The average number of tests in a minimal coverage test set (section 8.1) versus
expression size (number of independent conditions). This comparison is used to
determine one aspect of the cost-effectiveness of the different forms of MCDC. It is
assumed, as in section 6.4, that the smaller the minimal coverage test set, the easier the
attainment of coverage will be. However, this smaller test set also carries with it a lower
probability of error detection.

. The average number of minimal test sets (section 8.2) versus expression size. This
comparison is used to determine one aspect of the cost-effectiveness of the different
forms of MCDC. It is assumed, as in section 6.5, that the larger the number of acceptable
test sets, the easier the attainment of coverage will be.

. The probability of error detection (section 8.3) (mutation kill) given the minimum MCDC
test sets versus expression size. This analysis was conducted in two forms: one for the
mutants themselves, including the redundancy, and one for the spanned functions (i.e.,
the nonredundant mutations).

Because of the analysis methods used in these comparisons, they are limited to expressions with
one through four conditions. These results are exhaustive because the complete expression,
mutation, and minimal test sets spaces were examined. A partial analysis of the expressions with
five conditions was completed and the results are included in the corresponding tables in italics.
For the five-condition expressions, 71% of the expressions dominated by the (AND, <, 2)
operators were analyzed. These expressions were chosen because in the two- through four-
condition analyses, expressions dominated by these operators had results very near the average,
and there was insufficient time in this study to perform the complete five-condition analysis.
Care should be taken with these five condition results as the analysis of expressions was not
exhaustive as they were for one through four conditions.

8.1 AVERAGE SIZE OF MINIMAL TEST SETS.

This section determines the average size of the minimal MCDC compliant test sets allowed by
the Boolean expressions generated according to the methodology detailed in appendix D. Each
expression was exhaustively examined (i.e., all permutations and combinations of condition
combinations were computed) to determine the absolute smallest test set that would satisfy each
of the MCDC definitions.
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Table 37 provides the averages over all the expressions. This analysis differs from that
performed in section 6 in that all expressions generated were examined, not just the subset
represented by those presented in appendix C. Since all of the expressions are SBES, the test sets
for Unique-Cause MCDC are always the size predicted by the N + 1 rule developed in section
5.1. The data also agrees with the development in section 5.1 that any expression up through
three conditions always requires N + 1 tests for any form of MCDC. Because of this, only the
data for four and five conditions is really significant for the differentiation between the different
forms of MCDC. As was the case in section 6.4, this analysis did not establish a clear preference
between the different forms of MCDC.

TABLE 37. AVERAGE SMALLEST NUMBER TEST SETS SIZE VS
EXPRESSION SIZE

Number of Unique Unique

Conditions Cause Masking | Masking
1 2.0 2.0 2.0
2 3.0 3.0 3.0
3 4.0 4.0 4.0
4 5.0 5.0 4.7990
5 6.0 6.0 5.5112

8.2 AVERAGE NUMBER OF MINIMAL TEST SETS.

This section determines the average number of MCDC compliant minimal test sets allowed by
the Boolean expressions generated according to the methodology detailed in appendix D. Each
expression was exhaustively examined (i.e., all permutations and combinations of condition
combinations were computed) to determine all of the nonredundant minimal test sets that would
satisfy each of the MCDC definitions.

Table 38 provides the averages over all the expressions. This analysis differs from that
performed in section 6 in that all expressions generated were examined, not just the subset
represented by those presented in appendix C. As was the case in section 6.5, this analysis shows
that the Masking form of MCDC is preferable since it allows significantly more coverage sets
per expression.

TABLE 38. AVERAGE NUMBER OF MINIMAL NONREDUNDANT TEST SETS VS
EXPRESSION SIZE

Number of Unique Unique

Conditions Cause Masking | Masking
1 1.0 1.0 1.0
2 2.0000 2.0000 2.0000
3 7.3333 7.3333 9.3333
4 41.2222 | 41.2222 67.4444
5 73.1314 73.1314 460.139
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8.3 PROBABILITY OF MUTATION (ERROR) DETECTION.

This section determines the probability of detecting mutation errors for the Boolean expressions
generated according to the methodology detailed in appendix D. Each expression was
exhaustively examined by injecting each mutant into the expression, and then determining if each
minimal MCDC compliant test set would detect (kill) the error (mutant) or not.

This analysis was conducted in two different ways. In the first analysis, the raw mutants were
used, and the results for that analysis are in table 39. In the second analysis, the redundant
mutants were removed leaving only the spanned functions, and the results for that analysis are in
table 40. The reason for these two analyses is because the mutants tend to cluster (many mutants
representing the same underlying Boolean function), and the probability of error detection model
developed in section 5 considered all Boolean functions as the potential error needing detection.
By conducting both versions of the analysis, it tends to minimize skewing the results by mutants
clustering in areas where MCDC is insensitive.

TABLE 39. PROBABILITY OF MUTATION DETECTION VS
EXPRESSION SIZE LMUTANTS

Number of | Unique Unique
Conditions Cause Masking Masking
1 1.0 1.0 1.0
0.93959 | 0.93959 0.93959
0.94331 | 0.94331 0.94508
0.94786 | 0.94786 0.94540
0.91969 | 0.91969 0.91222

a1 Wi

The results in table 40 show that the probability of detecting (mutation) errors does not follow
the curve predicted by the probability of error detection model developed in section 5. This is
because mutation is not able to encompass the entire Boolean function space. However, since
this flaw applies equally to all forms of MCDC, mutation can be used as a yardstick for
comparison.

TABLE 40. PROBABILITY OF MUTATION DETECTION VS
EXPRESSION SIZE [LSPANNED FUNCTIONS

Number of Unique Unique

Conditions Cause Masking | Masking
1 1.0 1.0 1.0
2 0.92857 0.92857 0.92857
3 0.93160 0.93160 0.93394
4 0.93748 0.93748 0.93468
5 0.89990 | 0.89990 0.88652

The analyses performed in this section tend not to favor any form of MCDC from the probability
of error detection viewpoint. As was established in sections 5.2 and 6.2, and corroborated here,
the probability of error detection between all forms of MCDC is nearly identical.
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9. CONCLUSIONS AND FURTHER WORK.

Based on the results from all the different analyses performed during this study, it was concluded
that Masking MCDC should be the preferred form of MCDC. The progression from the start of
this study through its conclusion is described in the following paragraphs.

Coming into this study, it was known that all forms of verification could miss important features
of the system being implemented. Examples in this report demonstrate requirements-based
verification missing important features of the implementation. Structural coverage in the
software system development process is a check and balance on requirements-based verification.
Examples in this report demonstrate that structural coverage is not a complete answer, only one
part of the answer.

MCDOC is a form of structural coverage providing equivalence class and boundary value coverage
of the implementation. MCDC provides coverage of equivalence classes by ensuring that the
verification process visits each side of the subdomain partitions in a significant manner.
Extensions to cover the verification of relational operators and operands were defined that would
strengthen MCDC in the boundary value coverage of non-Booleans.

Examples demonstrate that multiple degrees of rigor could be applied to MCDC resulting in
different forms of MCDC. This study investigated three different forms of MCDC. These
investigations are intended to support a rational choice between which form of MCDC should be
preferred. The investigative methods could also be used to evaluate other proposed alternatives
to those investigated by this study. In fact, one of the investigative methods was used to compare
the performance of MCDC against Statement Coverage and Decision Coverage.

The first investigation was into the minimum number of tests required by each of the forms of
MCDC. This analysis showed that Masking MCDC would be the easiest form to satisfy, as it
required fewer tests than the other forms of MCDC. To support the theoretical analysis, an
empirical analysis was performed against logical expressions extracted from five LRUs. An
additional empirical investigation was conducted using generated expressions to cover the entire
SBE space. The empirical data confirmed the theory, and also showed that, in practice, Masking
MCDC required a number of tests equivalent to that of the other forms of MCDC.

The second investigation was into the theoretical minimum probability of logic error detection.
For this analysis a model was developed for the error detecting capabilities of any coverage
criterion.  This model defined an error as having an incorrect Boolean function in the
implementation (i.e., the implementation was not what was specified). The error model is based
on the number of tests, not the kind of tests. This means that all tests were assumed equal, hence,
any coverage method that provides an equal number of tests to MCDC would have the same
performance. Another study would need to be conducted to ascertain if the MCDC selection
rules were superior to just randomly selecting the equivalent number of tests. This other study
could also address errors in the relational space in order to determine if the extensions defined in
this report would be worth while (e.g., cost-effective).
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Using the above model, a theoretical analysis of the performance of the three forms of MCDC
was conducted. This analysis showed that even though Masking MCDC could allow fewer tests
than Unique-Cause MCDC, its performance in detecting incorrect Boolean functions was not that
much different. To support the theoretical analysis, an empirical analysis was performed against
logical expressions extracted from five LRUs. The empirical data not only confirmed the theory,
but also showed that the difference was smaller than the theory predicted. This is mainly due to
the fact that the number of tests was equivalent. An additional empirical analysis was performed
using generated expressions covering the SBE space and injected faults using the rules of
mutation. These empirical results did not follow the theory because of some problems
discovered with mutation theory itself (see appendix D). These problems did not compromise
using mutation as a yardstick to compare the three forms of MCDC. The results of the mutation
analysis also showed that the performance of the three forms of MCDC was nearly identical from
the probability of error detection viewpoint.

The theoretical analysis was extended to compare the performance of MCDC with Statement
Coverage and Decision Coverage. This analysis showed that the differences between Unique-
Cause MCDC and Masking MCDC were insignificant compared with the differences between
MCDC and Decision Coverage and Statement Coverage. Validation of these results would
require the analysis of actual subprograms extracted from airborne software and actual faults
from a real development process. These were not available for this study.

The third investigation was into the average number of independence pairs that met the
requirements of each form of MCDC. This investigation was entirely empirical, and showed that
there were more independence pairs at all levels for Masking MCDC than for either of the
unique-cause forms. It is assumed that the larger the number of independence pairs, the easier
coverage would be to attain. This easier attainment should result in less costly verification since
coverage would be satisfied more easily by requirements-based verification. This is where better
empirical data would have helped. Validation of these results would also require the analysis of
actual subprograms extracted from airborne software, and actual faults from a real development
process. Unfortunately, this study was limited to the extraction of logical expressions from
airborne software.

On the issue of the empirical data, it could also be improved in other ways. Perhaps the best
improvement that could be implemented is a design of experiments to determine exactly what
sort of empirical data is actually needed. This study used the data at hand for the analyses that
were performed. Another way for the data to be improved is to use the airborne software from
different supplier’s LRUs. This study was limited to a single supplier. The final improvement
would be to obtain software in multiple languages. This study was limited to the use of Ada. It
is not known if other languages would show equivalent results to those for Ada.

The fourth investigation was into the average number of minimally sized coverage test sets. This
investigation was also entirely empirical, and showed that Masking MCDC is satisfied by a
greater number of coverage test sets. It is assumed that the larger the number of coverage test
sets, the easier coverage would be to attain. That easier attainment should result in less costly
verification.
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The final (partial) investigation was into the applicability of the different forms of MCDC to
different expression types. Theoretically, it was shown the number of Boolean functions for
which Unique-Cause MCDC was applicable was a small portion of the Boolean function space.
It was also shown that the number of Boolean functions for which Masking MCDC was
applicable was a larger portion of the Boolean function space. It could not be determined if
Masking MCDC can be applied to all Boolean functions because the analysis could not be
completed. This would need to be the focus of yet another study.

Combining the different analyses leads one to the conclusion that Masking MCDC should be the
preferred form of MCDC. It requires equivalent numbers of tests to the currently defined
Unique-Cause MCDC, but allows for more independence pairs per condition and more coverage
test sets per expression.
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APPENDIX AITYP E-OF-TRIANGLE ANALYSIS

In this appendix the type-of-triangle problem is used to demonstrate that some form of structural
coverage analysis is needed as a check and balance on requirements-based verification, since that
(requirements-based) verification may miss important features of an implementation. This
analysis will use testing as the verification method, but any other verification method could have
been used.

In the triangle problem, a subprogram is supplied three integer values that represent the lengths
of three sides of a potential triangle. The subprogram is to return an indication of whether the
sides cannot represent a valid triangle, or if valid, the type of triangle they represent. This
problem is chosen because it is simple enough to be discussed in a small space but complex
enough to illustrate the points needed to be made. This discussion is directed through the
following progression:

1. First, the requirements for the problem are laid out with an Ada (package) specification to
which an implementation must adhere in order to solve this problem (section A.1).

2. Second, the specifications for tests that Myers gives in the front of his book [1] are
discussed and a set of test data based on these specifications is derived (section A.2).

3. Third, four different solutions (i.e., implementations) to the requirements are then
examined (sections A.3 through A.6). Each solution is given in an Ada (package) body
(implementation) which could be compiled under the required specification. All of the
implementation bodies have been coded in Ada with the closest fidelity to the original
implementations as could be managed. This will make comparisons between the
different implementations easier. It should be noted that if the implementations had been
done in Ada originally, the specification and bodies would be a bit different (e.g., the
interface would have required that three positive values be supplied). However, the
original codings are kept since some of the discussions require it. Any failures to meet
the intent of the original algorithms with these codings are entirely the fault of the author
of this report. The implementations are compared against the test specifications and test
data to see what coverage is provided (data) and what coverage could have been
potentially provided (specifications).

4. Fourth, the implementations are compared against each other to compare and contrast
how a coverage set adequate for an implementation performs against the others (section
A.7).

The points made in the above progression are given in a conclusions section (section A.8). In
addition, some further points are made about coverage in general.

Decision tables are a natural way to formally express what is happening in both the requirements
and implementations presented in this appendix, since a simple function is being discussed that is
entirely driven by logic. For the decision tables which are used in this appendix, the following
terminology is used:



- True

: False

: Don’t Care

: Can’t Execute (necessary when discussing implementations)
: Length of Side 1

: Length of Side 2

: Length of Side 3
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A.1 Requirements
The requirements for the type-of-triangle problem are as follows:
1. The subprogram shall accept as input three integer values that represent three lengths.

2. The subprogram shall determine if a valid triangle can be formed from the sides of the
given lengths. A valid triangle is one where the length of each side is smaller than the
sum of the other two.

3. If the three lengths represent an invalid triangle, then the subprogram shall return an
indication that the triangle is invalid.

4. If the three lengths represent a valid triangle, then the subprogram shall determine what
class of triangle is represented by those sides.

5. If the three lengths represent a valid equilateral triangle, then the subprogram shall return
an indication that the triangle is equilateral. An equilateral triangle is one where all three
sides are of equal length.

6. If the three lengths represent a valid isosceles triangle, then the subprogram shall return
an indication that the triangle is isosceles. An isosceles triangle is one where only two
sides are of equal length.

7. If the three lengths represent a valid scalene triangle, then the subprogram shall return an
indication that the triangle is scalene. A scalene triangle is one where none of the sides
are of equal length.

These requirements can be represented in a decision table. A decision table is composed of two
parts: upper and lower. The upper part lists the controlling conditions at the left of the table.
Columns are formed listing the combinations of states under which different actions are to be
taken by the function. The lower part lists the actions to be taken by the function. In this case,
there is only one action to be taken: returning the type of the triangle.

Table A-1 is a decision table (like) representation for the type-of-triangle requirements. The
columns have been given a name at the top of the table that will be used in various analyses
throughout this appendix. Note that this name does not correlate with the numbers of the textual
requirements. This is partly because the textual requirements contain things that cannot be
represented in the table and because one textual requirement can be responsible for multiple
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columns in the table (e.g., textual requirement 6 corresponds to columns Requirement 5, 6, and
7).

TABLE A-1. TYPE-OF-TRIANGLE REQUIREMENTS DECISION TABLE

Requirements

1 2 3 4 5 6 7 8

S,<S,+S, F - - T T T T T

S,<S,+S, - F T T T T T

S,<S+S, - - F T T T T T

S =S, - - - F F F T T

S,=S, - - - F F T F T

S,=S, - - - F T F F T
return= | Invalid | Invalid | Invalid | Scalene | Isosceles | Isosceles | Isosceles | Equilateral

The Ada (package) specification in figure A-1 is used for all of the implementations discussed in
this appendix. This code will be using the Ada name Length_Of Side_No. for the decision table
name S,, and the Ada name Not_A_Triangle for the decision table name Invalid.

package Triangles is

type Triangle_Type is (Not_A_Triangle, Equilateral, Isosceles,
Scalene);

function Type_Of Triangle(
Length_Of _Side_1 : in Integer;
Length_Of Side 2 : in Integer;
Length_Of_Side_3 : in Integer) return Triangle_Type;

end Triangles;

FIGURE A-1. TRIANGLES PACKAGE SPECIFICATION

One can now see where the use of Ada would have allowed for slightly different
implementations than those provided in this appendix. For instance, the parameters to the
Type_Of_Triangle function would probably have been of subtype positive, instead of integer.
This would have made certain internal checks performed by different implementations
unnecessary.

A.2 Myers’ Tests

This section will investigate how the tests that Myers specifies at the beginning of his book [1]
compare to coverage of the requirements. These tests will be compared against the coverage
they might provide for each of the implementations within the implementation subsections of
this appendix. Myers’ tests are being used as a convenient point of comparison as they are
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readily available. Myers himself acknowledges that these are not a complete set of test
specifications, and it is not implied that they are. The comparisons based on these specifications
are here to make a point only (i.e., that requirements-based verification, in particular testing, in
the absence of structural coverage can be insufficient). The mathematical equations given to
define each of Myers’ tests will be over specified (i.e., there will be redundant clauses in them).
This will make filling out decision tables in the rest of the appendix easier.

The first test that Myers calls for is that of a valid scalene triangle. The valid scalene triangle can
be defined as

S,<S,+S, (0S,<S,+S, 0S,<S,+S, 0S,#S, 1S,#S, OS2, (Myers’ test 1)

The second test that Myers calls for is that of a valid equilateral triangle. The valid equilateral
triangle can be defined as

S,<S,+S, 0S,<S+S, 0S,<S+S, 0S,=S, 0S,=S, 0S,=S, (Myers’ test 2)

The third test that Myers calls for is that of a valid isosceles triangle. The valid isosceles triangle
can be defined as

§,<S,+S, 0S,<S,+S, 00S,<S,+S, O ((S,=S, 00S,2S, 0S,2S)) U(S,2S, 0S,=S, 0S,2S,) O
(5,25, 0S,25, 0S.=S))) (Myers’ test 3)

The fourth test that Myers calls for is three valid isosceles triangles such that each permutation of
the two equal sides is tried. Notice that satisfaction of any of these permuted isosceles triangles
automatically satisfies Myers’ test 3. Equation 3 could be removed, for minimality, as it is not
telling anything new over the following equations. The valid permuted isosceles triangles can be
defined as

S,<S,+S, 05,<S.+S, 0S,<S,+S, 0S,=S, 0SS, 05,25,  (Myers’ test 4a)
$,<S,+S, 05,<S.+S, 0S,<S,+S, 0S#S, 0S,=S, 05,25,  (Myers’ test 4b)
$,<S,+S, 05,<S.+S, 0S,<S,+S, 0S#S, 08,25, 0S,=S,  (Myers’ test 4c)

The fifth test that Myers calls for is one where one of the sides is of zero length. This can be
interpreted in one of two ways: either exactly one side has zero length or at least one side has
zero length. These two interpretations will each be defined. Notice that satisfaction of the first
interpretation automatically satisfies the second. However, satisfaction of the second does not
automatically satisfy the first (e.g., when two sides are zero). These invalid zero length triangles
can be defined as follows

(S,=0 0S,#0 0S,£0) 0(S,20 0S,=0 0S,20) [(S,20 05,20 0S,=0) (Myers’ test 5a)

S,=00S,=001S,=0 (Myers’ test 5b)
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The sixth test that Myers calls for is one where one of the sides is of negative length. This can be
interpreted in one of two ways: either exactly one side has negative length or at least one side
has negative length. These two interpretations will each be defined. Notice that satisfaction of
the first interpretation automatically satisfies the second. However, satisfaction of the second
does not automatically satisfy the first (e.g., when two sides are negative). These invalid
negative length triangles can be defined as follows

(5,<0 0S,20 0S,20) O(S,20 0S,<0 0S,;20) [0 (S,20 0S,20 JS,<0) (Myers’ test 6a)
S,<00S,<0[JS,<0 (Myers’ test 6b)

The seventh test that Myers calls for is one where all of the sides are positive and one of the sides
is of equal length to the sum of the other two. Notice that with three positive numbers, if one is
equal to the sum of the other two, then both of the smaller sides (one of the other two) cannot be
equal to the large side (the side which equals the sum of the other two) plus the remaining side.
This invalid length triangle can be defined as

$,>0 05,0 0S,>0 [(S,=S,+S, 0S,=5,+S, [S,=5,+S,) (Myers’ test 7)

The eighth test that Myers calls for is three of the invalid length triangles called for in Myers’ test
7 such that all three permutations of the long side is tried. Notice that satisfaction of any of these
permutations will automatically satisfy Myers’ test 7. Myers’ test 7 could removed, for
minimality, as it adds nothing over the following definitions. These invalid length permuted
triangles can be defined as

S >00S,>0 0S,>0 JS,=S,+S, (Myers’ test 8a)
S >00S,>0 0S,>0 1JS,=S,+S, (Myers’ test 8b)
S$;>00S,>0 0S,>0 JS,=S,+S, (Myers’ test 8c)

The ninth test that Myers calls for is one where all of the sides are positive and one of the sides is
of greater length than the sum of the other two. This invalid length triangle can be defined as

$,>0 08,0 0S,>0 0(S,>S,+S, (1S,>5,+S, [1S,>5,+S,) (Myers’ test 9)

The tenth test that Myers calls for is three of the invalid length triangles called for in Myers’ test
9 such that all three permutations of long side (i.e., the side which is greater than the sum of the
other two) is tried. Notice that satisfaction of any of these permutations will automatically
satisfy Myers’ test 9. Meyers’ test 9 could be removed, for minimality, as it adds nothing over
the following definitions. These invalid length permuted triangles can be defined as

S$;>00S,>0 [0S,>0 JS,>S,+S, (Myers’ test 10a)
S>00S,>0 0S,>0 S, >S+S, (Myers’ test 10b)
S >00S,>0 [0S,>0 JS,>S,+S, (Myers’ test 10c)
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The eleventh test that Myers calls for is one where all sides are of zero length. This invalid
length triangle can be defined as

S,=00S,=0 00S,=0 (Myers’ test 11)

The final two tests that Myers calls for concern errors not permitted in Ada, so they will not be
considered as part of this analysis. The first error concerns calling the classification subprogram
with objects of the wrong type. This would be detected by the compiler and no executable code
would be generated for the offending unit, so no erroneous data could be sent. The second error
concerns calling the classification subprogram with the wrong number of arguments. Again, this
would be detected and rejected by the compiler.

Table A-2 is a pseudo decision table identifying the overlap of the Myers’ test specifications with
the requirements. Note that for this decision table, the dot “®” will be used to indicate that
Myers’ test specification(s) may potentially provide coverage. The requirements are identified
using the names that were used in table A-1. Myers’ test specifications are identified by the
numbering used in the previous specifications (e.g., Myers 4a). To make this more of a proper
decision table, the specification rows from table A-1 could be inserted in this table below the
specification names.

TABLE A-2. TYPE-OF-TRIANGLE REQUIREMENTS VS MYERS’ TESTS

Myers’ Requirements
Tests 1 2 3 4 5 6 7 8

1 [
2 [
3 [ [ °
4a o
4b d

4c o

5a ° [ °

5b o [ o

6a ° [ °

6b o [ o
7 ° [ °

8a o

8b ®

8¢ o
9 ° [ °

10a ®

10b ®

10c o

11 ° [ °

The reason it is said that a specification may potentially provide coverage is because it is possible
for a test specification to be broad enough that it covers parts of multiple requirements. For
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example, consider the overlap between Myers’ test specification 5a (exactly one side is of zero
length) with requirements specifications 1, 2, and 3 (invalid side(s)). This overlap is graphically
demonstrated in figure A-2 with Venn diagrams. A Venn diagram is a graphical way to show the
intersections (overlaps) of different sets. Each of these intersections forms a subdomain that can
be described by a mathematical equation. The subdomains within the left Venn diagram have
been labeled with condition codes which correspond to the three side checks (i.e., (S,<S,+S,,
Sz<83+81’ 83<Sl+82))'

a
&

Requirements Test ba

FIGURE A-2. VENN DIAGRAMS FOR INVALID TRIANGLES AND TEST 5a

The three requirements specifications themselves overlap each other as is shown in the left side
of the figure (e.g., the invalid triangle (0,0,0) satisfies all three requirements). In all seven
subdomains it is possible to have invalid triangles with exactly one of the lengths equal to zero as
well as none of the lengths equal to zero (e.g., the